TEORIA DA COMPUTAÇÃO

Prova 3 – 05/10/2017 – Prof. Marcus Ramos

1ª Questão (2,0 pontos): Provar que toda linguagem é decidida por uma Máquina de Turing de tempo polinomial se e somente se ela possuir um verificador de tempo polinomial.

- Suponha que L é decidida por uma MT M de tempo polinomial. Neste caso, o verificador pode ser obtido simulando-se a máquina M e guiando-se as escolhas nãodeterminísticas da possível solução em M para que o sorteio coincida com o certificado fornecido; a partir daí, basta simular M com esta entrada e fornecer, na saída, o mesmo resultado de M.
- Para construir uma Máquina de Turing M que decide L a partir de um verificador V para L, basta fazer com que M gere todas as possíveis soluções, e teste cada uma em delas em V. Em outras palavras, M gera todas as possíveis soluções e usa V para testálas individualmente.

2ª Questão (1,5 ponto): Como se relacionam os conjuntos P e NP?

P é o conjunto dos problemas que podem ser decididos por Máquinas de Turing determinísticas de tempo polinomial. NP é o conjunto dos problemas que podem ser decididos por Máquinas de Turing não-determinísticas de tempo polinomial. Como toda Máquina de Turing determinística de tempo polinomial é também uma Máquina de Turing não-determinística de tempo polinomial, segue que $P \subseteq NP$. Por outro lado, não se sabe ainda se P = NP ou $P \neq NP$. Em outras palavras, ainda não sabemos se os problemas para os quais são conhecidos apenas algoritmos de tempo exponencial também possuem algoritmos de tempo polinomial.

3ª Questão (1,5 ponto): Provar que, se A reduz em tempo polinomial para B, e $B \in P$, então $A \in P$.

Basta provar que A pode ser decidido em tempo polinomial. Para isso, é suficiente combinar a redução de tempo polinomial de A para B com a decisão de tempo polinomial de B (uma vez que $B \in P$). Se f é a redução e $f(w) \in B$, então $w \in A$. Se $f(w) \notin B$, então $w \notin A$. Em qualquer caso, temos um decisor de tempo polinomial para A.

 4^a Questão (2,0 pontos): Complete a tabela abaixo, de tal forma que o resultado corresponda às regras de substituição do cálculo lambda. Suponha que N,P,Q sejam termos lambda, x,y variáveis e a um átomo, $a \neq x$.

```
[N/x]x \equiv \dots
[N/x]a \equiv \dots
[N/x]PQ \equiv \dots
[N/x](\lambda x. P) \equiv \dots
[N/x](\lambda y. P) \equiv \dots
```

Os quatro primeiros casos são:

- $[N/x]x \equiv N$
- $[N/x]a \equiv a$
- $[N/x]PQ \equiv [N/x]P[N/x]Q$
- $[N/x](\lambda x. P) \equiv \lambda x. P$

O quinto caso se desdobra em três:

- $[N/x](\lambda y.P) \equiv \lambda y.P$, se $x \notin FV(P)$
- $[N/x](\lambda y. P) \equiv \lambda y. [N/x]P$, se $x \in FV(P)$ e $y \notin FV(N)$
- $[N/x](\lambda y.P) \equiv \lambda z.[N/x][z/y]P$, se $x \in FV(P)$ e $y \in FV(N)$. Note caso, deve-se escolher z tal que $z \notin FV(NP)$.

5ª Questão (1,5 ponto): Provar que \overline{add} $\overline{2}$ (\overline{mult} $\overline{2}$ $\overline{2}$) \rhd_{β} $\overline{6}$. Considere $\overline{add} \equiv \lambda uvxy.ux(vxy)$ e $\overline{mult} \equiv \lambda uvx.u(vx)$ e lembre-se que $\overline{n} \equiv \lambda xy.x^ny$.

```
\overline{mult} \ \overline{2} \ \overline{2} \equiv \\ (\lambda uvx. u(vx)) \ \overline{2} \ \overline{2} \Rightarrow_{\beta} \\ \lambda x. \overline{2}(\overline{2}x) \equiv \\ \lambda x. (\lambda xy. x(xy))(\overline{2}x) \Rightarrow_{\beta} \\ \lambda x. \lambda y. (\overline{2}x)((\overline{2}x)y) \Rightarrow_{\beta} \\ \lambda x. \lambda y. (\overline{2}x)(x^2y) \Rightarrow_{\beta} \\ \lambda x. \lambda y. x^2(x^2y) \equiv \\ \lambda x. \lambda y. x^4y \equiv \\ \overline{4}
\overline{add} \ \overline{2} \ \overline{4} \equiv \\ (\lambda uvxy. ux(vxy)) \ \overline{2} \ \overline{4} \Rightarrow_{\beta} \\ \lambda xy. \overline{2}x(\overline{4}xy) \Rightarrow_{\beta} \\ \lambda xy. \overline{2}x(x^4y) \Rightarrow_{\beta} \\ \lambda xy. x^2(x^4y) \equiv \\ \lambda xy. x^6y \equiv \\ \overline{6}
```

6ª Questão (1,5 ponto): Provar que $Y_{CR} \equiv \lambda x. VV$, com $V \equiv (\lambda y. x(yy))$, é um operador de ponto fixo. Ou seja, para qualquer termo lambda $X, Y_{CR}X =_{\beta} X(Y_{CR}X)$.

```
\begin{split} Y_{CR}X &\equiv \\ (\lambda x.VV)X &\rhd_{\beta} \\ ([X/x])V[X/x]V &\equiv \\ (\lambda y.X(yy))(\lambda y.X(yy)) &\rhd_{\beta} \\ [\lambda y.X(yy)/y](X(yy)) &\rhd_{\beta} \\ X((\lambda y.X(yy))(\lambda y.X(yy))) \end{split}
```

Por outro lado, sabemos (acima) que:

$$Y_{CR}X \rhd_{\beta} (\lambda y. X(yy))(\lambda y. X(yy))$$

Logo, temos $Y_{CR}X =_{\beta} X(Y_{CR}X)$ como queríamos demonstrar.