Decidibilidade

Prof. Marcus Vinícius Midena Ramos

Universidade Federal do Vale do São Francisco

25 de maio de 2010

marcus.ramos@univasf.edu.br www.univasf.edu.br/~marcus.ramos

Bibliografia

Básica:

- Introduction to Automata Theory, Languages and Computation (capítulo 9)
 J. E. Hopcroft, R. Motwani e J. D. Ullman Addison-Wesley, 2007, 3ª edicão
- ► Introdução à Teoria da Computação (capítulos 4 e 5)
 M. Sipser
 Thomson, 2006, 2ª edicão

Complementar:

Languages and Machines (capítulo 12)
 T. A. Sudkamp
 Addison-Wesley, 2006, 3ª edição

Roteiro

- Introdução
- Problemas decidíveis
 - Linguagem L_d
- Complemento de linguagens
- Máquina de Turing Universal
- $oldsymbol{6}$ Linguagem L_u
 - Nedutibilidade
- Problema da parada
- $oldsymbol{9}$ Linguagens L_e e L_{ne}
- Teorema de Rice
- Autômato Linearmente Limitado
- Problemas indecidíveis e histórias de computação
- PCP
 - 4 Problemas relacionados com GLCs e LLCs

Questões

- Existe um algoritmo que resolve um certo problema?
- ► Como demonstrar que existe ou que não existe tal algoritmo?

Definições

- Decidibilidade é o estudo dos problemas codificados como linguagens;
- Máquinas de Turing são usadas como representação formal da noção de algoritmo;
- ▶ A prova da existência (ou não) de um algoritmo que resolve um certo problema é equivalente à demonstração da existência (ou não) de uma Máquina de Turing que resolve o mesmo problema.

Conceito

- Um problema é dito um "problema de decisão" quando ele é transformado num problema equivalente, cujas respostas são apenas SIM ou NÃO;
- A coleção das instâncias de um problema de decisão cujas respostas são apenas afirmativas forma a linguagem que representa o referido problema;
- Necessidade de se codificar as instâncias do problema de forma unívoca.

Essência

- Determinar se a linguagem que representa um problema de decisão é recursiva.
 - Em caso afirmativo, existe um algoritmo (melhor caso);
 - Em caso negativo, investigar se a linguagem é recursivamente enumerável
- ▶ Determinar se a linguagem que representa um problema de decisão é recursivamente enumerável.
 - Em caso afirmativo, é possível determinar as instâncias afirmativas do problema, mas haverá sempre pelo menos uma entrada (cuja resposta é negativa) que nunca produzirá resposta;
 - Em caso negativo, haverá sempre pelo menos uma entrada (cuja resposta é positiva) que nunca produzirá resposta (pior caso);

Exemplo

- Problema P: determinar se um número binário é par.
- Problema de decisão equivalente P': agrupar os números binários que são pares (resposta afirmativa ao problema) e formar uma linguagem L com eles.
- ▶ $L = \{0, 10, 100, 110, 1000, 1010, 1100, 1110, ...\}$. Note que os números ímpares (1, 01, 11 etc) não pertencem à L;

Problema de decisão Exemplo

- A resposta ao problema P determinar se um número binário é par é transformada na resposta à pergunta: "o número binário fornecido pertence à linguagem L?"
- Genericamente, pretende-se determinar se existe uma Máquina de Turing M que sempre pára e é capaz de decidir se uma cadeia qualquer de zeros e uns pertence à linguagem L;
- ightharpoonup Caso exista tal máquina, isso implica a existência de um algoritmo que resolve P e diz-se que M "decide" P'. Caso contrário, não existe tal algoritmo.

Exemplos

Suponha que c(X) representa uma codificação de X sobre um certo alfabeto Σ .

- ▶ Dadas duas gramáticas livres de contexto G_1 e G_2 , é possível determinar se $L(G_1) = L(G_2)$?
 - ▶ Codificar G_1 e G_2 de forma adequada;
 - ▶ Considerar a linguagem $\{c(G_1)c(G_2)|L(G_1)=L(G_2)\}$
 - Determinar se essa linguagem é recursiva.
- lacktriangle Dadas uma Máquina de Turing M e uma entrada w, é possível determinar se M aceita w?
 - ightharpoonup Codificar M e w de forma adequada;
 - ▶ Considerar a linguagem $\{c(M)c(w)|M$ aceita $w\}$
 - Determinar se essa linguagem é recursiva.

Conceitos

- ▶ Um problema de decisão é dito "decidível" (ou "solucionável") se a linguagem que representa as instâncias afirmativas do problema forma uma linguagem recursiva. Caso contrário o problema é dito "não-decidível" ("indecidível" ou "não-solucionável")..
- ► Como linguagens recursivas são reconhecidas por Máquinas de Turing que sempre param, qualquer que seja a entrada, a existência de um algoritmo que resolve um problema de decisão implica a existência de uma Máquina de Turing que sempre pára, qualquer que seja a entrada fornecida.

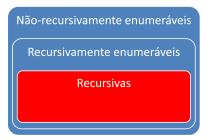
Conceitos

- ► Problemas de decisão que formam linguagens recursivamente enumeráveis e não-recursivas são aceitos por Máquinas de Turing que entram em loop para pelo menos uma instância do problema de decisão cuja resposta é negativa;
- ► Problemas de decisão que formam linguagens não-recursivamente enumeráveis não são aceitos por nenhuma Máquina de Turing que pare sempre que as instâncias são afirmativas.

Definições

Solucionável × Não-solucionável

- ► Problema <u>solucionável</u> ⇔ Linguagem recursiva
- ► Problema não-solucionável ⇔ Linguagem não-recursiva

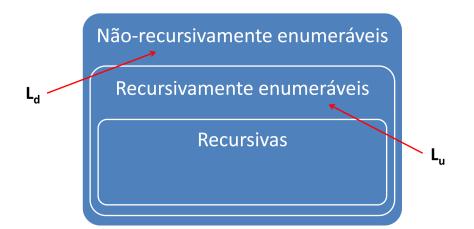


Definições

Parcialmente solucionável × Totalmente insolúvel

- ▶ Problema parcialmente solucionável ⇔ Linguagem recursivamente enumerável
- ▶ Problema <u>totalmente insolúvel</u> ⇔ Linguagem não-recursivamente enumerável

Conceitos



Motivação

Por que estudar decidibilidade?

- Ajuda a identificar problemas insolúveis;
- Evita desperdício de tempo e esforço com a tentativa de resolução de problemas insolúveis;
- Aponta para possibilidades de simplificações e/ou alterações do problema original, a fim de que ele se torne solúvel;
- ► Amplia a sua compreensão sobre a natureza, as possibilidades e os limites da computação.

Seqüência

- Problemas decidíveis;
- Problemas indecidíveis;
- Técnicas para classificar problemas de natureza originalmente desconhecida como sendo decidíveis ou indecidíveis.

Problema A_{AFD}

Aceitação em autômatos finitos determinísticos:

$$A_{AFD} = \{\langle B, w \rangle | B \text{ \'e um AFD que aceita a cadeia } w\}$$

<u>Teorema</u>: A_{AFD} é uma linguagem decidível.

- **①** Construir uma MT M que analisa $\langle B \rangle$;
- ② Se $\langle B \rangle$ não representa um AFD válido, M pára e rejeita a entrada;
- lacktriangledown Se $\langle B \rangle$ representa um AFD válido, M simula B com a entrada w;
- lacktriangle Se B pára numa configuração final, então M pára e aceita;
- lacktriangle Se B pára numa configuração não-final, então M pára e rejeita.

Problema A_{AFN}

Aceitação em autômatos finitos não-determinísticos:

$$A_{AFN} = \{\langle B, w \rangle | B \text{ \'e um AFN que aceita a cadeia } w\}$$

 $\overline{ ext{Teorema}}$: A_{AFN} é uma linguagem decidível.

- ① Construir uma MT M que analisa $\langle B \rangle$;
- $oldsymbol{lack}$ Se $\langle B
 angle$ não representa um AFN válido, M pára e rejeita a entrada;
- ullet Se $\langle B \rangle$ representa um AFN válido, M converte o AFN B para um AFD B' equivalente;
- lacktriangledown M simula B' com a entrada w;
- lacktriangle Se B' pára numa configuração final, então M pára e aceita;
- lefta Se B' pára numa configuração não-final, então M pára e rejeita.

Problema A_{EXR}

Geração de cadeia por expressão regular:

 $A_{EXR} = \{\langle R, w \rangle | R$ é uma expressão regular que gera a cadeia $w\}$

Teorema: A_{EXR} é uma linguagem decidível.

- Construir uma MT M que analisa $\langle R \rangle$;
- f Q Se $\langle R
 angle$ não representa uma expressão regular válida, M pára e rejeita;
- ullet Se $\langle R \rangle$ representa uma expressão regular válida, M converte R para um AFN B que reconhece a mesma linguagem;
- M converte o AFN B para um AFD B' equivalente;
- \bullet M simula B' com a entrada w;
- \bullet Se B' pára numa configuração final, então M pára e aceita;
- lacktriangle Se B' pára numa configuração não-final, então M pára e rejeita.

Problema V_{AFD}

Vacuidade da linguagem reconhecida por autômato finito determinístico:

$$V_{AFD} = \{\langle B \rangle | B \text{ \'e um AFD e } L(B) = \emptyset \}$$

 $\overline{ ext{Teorema}}$: V_{AFD} é uma linguagem decidível.

- \bullet Marcar o estado inicial de B;
- Repetir até que nenhum novo estado venha a ser marcado:
 - Marque todos os estados de destino para os quais existam transições partindo de um estado já marcado;
- Se nenhum estado final estiver marcado, páre e aceite; caso contrário, páre e rejeite.

Problema EQ_{AFD}

Igualdade das linguagens reconhecidas por dois autômatos finitos determinísticos:

$$EQ_{AFD} = \{\langle A,B \rangle | A,B \text{ são AFDs e } L(A) = L(B)\}$$

 $\overline{ ext{Teorema}}\colon EQ_{AFD}$ é uma linguagem decidível.

Prova:

① Construir o AFD C que reconhece a linguagem:

$$L(A) \cap L(B)) \cup (L(A) \cap L(B))$$

Notar que $L(A) = L(B) \Leftrightarrow L(C) = \emptyset$;

- ② Determinar se $L(C) = \emptyset$;
- Em caso afirmativo, páre e aceite a entrada;
- Caso contrário, páre e rejeite a entrada.

Problema A_{GLC}

Geração de cadeia por gramática livre de contexto:

$$A_{GLC} = \{\langle G, w \rangle | G \text{ \'e uma GLC que gera } w\}$$

<u>Teorema</u>: A_{GLC} é uma linguagem decidível.

- ① Construir uma MT que obtém G' na Forma Normal de Chomsky $(A \to BC|a)$ tal que L(G) = L(G');
- ② Considerar n = |w|;
- **3** Se n > 0, então fazer todas as derivações com 2 * n 1 passos;
- Se n=0, então fazer todas as derivações com 1 passo;
- ullet Se alguma dessas derivações gera w, páre e aceite;
- Caso contrário, páre e rejeite.

Problema A_{GLC}

Construir uma MT que simula G diretamente pode não funcionar, pois pode haver seqüências infinitas de derivações em G.

Problema V_{GLC}

Vacuidade da linguagem gerada por uma gramática livre de contexto:

$$V_{GLC} = \{\langle G \rangle | G \text{ \'e uma GLC e } L(G) = \emptyset \}$$

<u>Teorema</u>: V_{GLC} é uma linguagem decidível.

- lacktriangle Marcar todos os símbolos terminais de G;
- Repetir até que nenhum novo símbolo não-terminal venha a ser marcado:
 - Marque todos os símbolos não-terminais X para os quais existam regras $X \to Y_1 Y_2 ... Y_n$ e cada Y_i já esteja marcado;
- Se a raiz da gramática não estiver marcada, páre e aceite; caso contrário, páre e rejeite.

Problema V_{GLC}

Testar todas as cadeias w em G diretamente pode não funcionar, pois pode haver uma quantidade infinita de cadeias a serem testadas.

Problema EQ_{GLC}

Igualdade das linguagens geradas por duas gramáticas livres de contexto:

$$EQ_{GLC} = \{\langle G, H \rangle | G, H \text{ são GLCs e } L(G) = L(H) \}$$

 $\underline{\mathsf{Teorema}}$: EQ_{AFD} é uma linguagem indecidível.

- Será vista mais adiante;
- ► A classe das linguagens livres de contexto não é fechada em relação à operação de complementação.

Problema LLC

Determinar se uma cadeia pertence à uma determinada linguagem livre de contexto L (análise sintática):

$$LLC = \{\langle w \rangle | w \in L(G)\}$$

Teorema: LLC é uma linguagem indecidível.

- ▶ Seja G uma GLC tal que L = L(G);
- lacktriangle Determinar se $\langle G,w
 angle$ é aceita pela MT que decide A_{GLC} ;
- ► Em caso afirmativo, páre e aceite;
- Caso contrário, páre e rejeite.

Problema LLC

Construir uma MT que simula diretamente um autômato de pilha P que reconhece L pode não funcionar, pois podem haver seqüências de movimentações infinitas em P.

Ordenação de cadeias binárias

Seja $\Sigma = \{0,1\}$. Então o conjunto Σ^* é enumerável.

- ▶ Basta considerar as cadeias $w \in \Sigma^*$ em ordem crescente de comprimento;
- Para cada comprimento, considerar as cadeias ordenadas lexicograficamente;
- ϵ , 0, 1, 00, 01, 10, 11, 000, 001, 010, ...
- ightharpoonup A *i*-ésima cadeia será denotada w_i ;
- $\mathbf{v}_1 = \epsilon, w_2 = 0, w_3 = 1, w_4 = 00, w_5 = 01, w_6 = 10, w_7 = 11, \dots$

Convenções

Seja M com alfabeto de entrada $\Sigma = \{0,1\}$. Uma codificação de M sobre o próprio alfabeto Σ é a seguinte:

- $ightharpoonup Q = \{q_1, q_2, ..., q_r\};$
- ightharpoonup Suponha que o estado inicial é q_1 ;
- ► Suponha critério de aceitação "Entrada" (a máquina pára quando entra num estado final);
- \triangleright Suponha que há um único estado final, e ele é q_2 ;
- $\Sigma = \{X_1, X_2, ..., X_s\};$
- ▶ Suponha $X_1 = 0, X_2 = 1, X_3 = B$. Os demais símbolos são auxiliares;
- ▶ Suponha que D_1 representa movimento para a esquerda, D_2 para a direita.

Convenções

Considere $\delta(q_i,X_j)=(q_k,X_l,D_m)$. Uma codificação para essa transição é: $0^i10^j10^k10^l10^m$

onde:

- ▶ 0^i representa o estado q_i ;
- $ightharpoonup 0^j$ representa o símbolo X_i ;
- $ightharpoonup 0^k$ representa o estado q_k ;
- $ightharpoonup 0^l$ representa o símbolo X_l ;
- $ightharpoonup 0^m$ representa o movimento D_m .

Como i,j,k,l,m são maiores que zero, a cadeia 11 não é subcadeia de $0^i10^j10^k10^l10^m$. 11 será usada para separar transições.

Convenções

Considere $|\delta|=n$. Uma codificação para δ (e consequentemente para a Máquina de Turing M) é:

$$C_1 11 C_2 11 \dots C_{n-1} 11 C_n$$

onde C_i representa a codificação da transição i.

Como cada C_i começa e termina com pelo menos um símbolo 0, a cadeia 111 não é subcadeia de $C_111C_211...C_{n-1}11C_n$. 111 será usada para separar a MT de outros elementos, se for o caso.

Exemplo

Seja:

$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_2\})$$

com:

$$\delta(q_1, 1) = (q_3, 0, R) \qquad \underbrace{0}_{q_1} \underbrace{1}_{1} \underbrace{000}_{q_3} \underbrace{1}_{00} \underbrace{0}_{0} \underbrace{1}_{R} \underbrace{00}_{0}$$

$$\delta(q_3, 0) = (q_1, 1, R) \qquad 0001010100100$$

$$\delta(q_3, 1) = (q_2, 0, R) \qquad 00010010010100$$

$$\delta(q_3, B) = (q_3, 1, L) \qquad 0001000100010$$

Portanto, a cadeia que representa M é:

$$\delta(q_1,1) = (q_3,0,R)$$

$$\delta(q_3,0) = (q_1,1,R)$$

$$\delta(q_1, 1) = (q_3, 0, R)$$
 $\delta(q_3, 0) = (q_1, 1, R)$ $\delta(q_3, 1) = (q_2, 0, R)$ $\delta(q_3, R) = (q_3, 1, L)$

$$\delta(q_3, B) = (q_3, 1, L)$$

Cadeias binárias e Máquinas de Turing

Com a ressalva abaixo, é possível considerar a i-ésima cadeia binária w_i como sendo a representação de uma Máquina de Turing, denotada M_i .

- ▶ Se w_i não respeita as regras de formação enunciadas anteriormente, então considerar M_i como a Máquina de Turing formada por um único estado (não-final), sem transições, e que pára para qualquer entrada; portanto, $L(M_i) = \{\};$
- ightharpoonup Caso contrário, w_i denota a Máquina de Turing M_i codificada conforme as regras expostas.

Linguagem L_d

$$L_d = \{w_i \in \{0, 1\}^* | w_i \notin L(M_i)\}$$

- Contém as cadeias que, quando consideradas como codificações de Máquinas de Turing, são tais que elas não são aceitas pelas respectivas Máquinas de Turing que elas representam;
- Linguagem da "diagonalização".

Diagonalização

Para cada par linha/coluna (i, j), a tabela indica se M_i aceita w_j :

	w_1	w_2	w_3	W_4	
$< M_I > = w_I$	0	1	1	0	
$< M_2 > = w_2$	1	1	0	0	
$< M_3 > = w_3$	0	0	1	1	
$< M_4 > =_{W_4}$	0	1	0	1	

1 indica aceitação, 0 indica rejeição ou loop (os valores apresentados são hipotéticos).

Diagonalização

- \blacktriangleright Vetor característico: 0, 1, 1, 1, ...;
- ▶ Complemento do vetor característico: 1, 0, 0, 0, ...;
- $\blacktriangleright w_1 \in L_d$, $w_2 \notin L_d$, $w_3 \notin L_d$, $w_4 \notin L_d$ etc;
- ightharpoonup Portanto, $L_d = \{w_1, ...\}$;
- ▶ $L_d = \{w_i | w_i \notin L(M_i)\};$

Diagonalização

- $ightharpoonup L_d$ não é aceita por nenhuma Máquina de Turing, pois o vetor característico dela difere em pelo menos uma posição do vetor característico de todas as linguagens aceitas por todas as Máquinas de Turing que existem;
- ▶ Em outras palavras, existe pelo menos uma cadeia que difere L_d de $L(M_i), \forall i \geq 1;$
- $ightharpoonup L_d$ não é uma linguagem recursivamente enumerável;
- lacktriangle Não existe nenhuma Máquina de Turing que aceite L_d .

L_d não é recursivamente enumerável

Teorema:

A linguagem L_d não é recursivamente enumerável.

Prova:

- ▶ Suponha que L_d seja recursivamente enumerável. Então deve existir uma Máquina de Turing M que aceita L_d . Logo, $M=M_i$ para algum valor de i. Considere, portanto, que M_i aceita L_d e considere a cadeia w_i :
 - ▶ Se $w_i \in L_d$, então M_i aceita w_i . Mas, por definição, se M_i aceita w_i então w_i não pode pertencer à L_d ;
 - ▶ Se $w_i \notin L_d$, então M_i não aceita w_i . Mas, por definição, se M_i não aceita w_i então w_i deve pertencer à L_d .
- Qualquer que seja o caso, há uma contradição;
- lacktriangle Logo, a hipótese é falsa e não existe M_i que aceite L_d .

Se L é recursiva, então \overline{L} também é recursiva

Teorema:

Se L é recursiva, então \overline{L} também é recursiva.

Prova:

Seja L=L(M), onde M é uma Máquina de Turing que sempre pára. O seguinte método mostra como obter M' a partir de M de tal forma que $L(M')=\overline{L(M)}$. Inicialmente, M'=M.

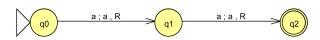
- lacktriangle Os estados finais de M tornam-se não-finais em M';
- ② As transições que partiam dos estados finais de M (agora não finais em M') são removidas em M' (critério "parada" apenas);
- $oldsymbol{0} M'$ tem um novo e único estado final, não existente em M, denotado r;
- Para cada combinação de estado não-final de M e símbolo de entrada não aceito nesse estado, adicionar, em M', uma transição do mesmo estado com esse símbolo para r.

Se L é recursiva, então \overline{L} também é recursiva

- (1) e (2) garantem que todas as cadeias aceitas por M são rejeitadas por M';
- ▶ (3) e (4) garantem que todas as cadeias rejeitadas por M são aceitas por M';
- ightharpoonup Como M sempre pára, então M' sempre pára também;
- ightharpoonup Portanto, M' aceita \overline{L} e \overline{L} é recursiva.

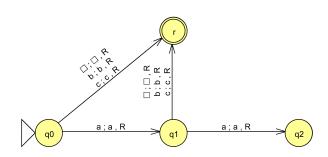
Exemplo

A Máquina de Turing M abaixo aceita a linguagem $aa(a|b|c)^*$ (cadeias que possuem aa como prefixo):



Exemplo

A Máquina de Turing M' abaixo aceita a linguagem $(a|b|c)^* - aa(a|b|c)^*$ (cadeias que não possuem aa como prefixo):



L e \overline{L} são recursivamente enumeráveis se e somente se L é recursiva

Teorema:

L e \overline{L} são recursivamente enumeráveis se e somente se L é recursiva.

Prova:

- (\Leftarrow) Se L é recursiva, então, pelo Teorema 1, \overline{L} também é recursiva. Como, pela definição, toda linguagem recursiva é também recursivamente
- enumerável, isso prova que L e \overline{L} são recursivamente enumeráveis. (\Rightarrow) Seja M_1 e M_2 as Máquinas de Turing que aceitam, respectivamente,
- L e L. Os métodos apresentados a seguir mostram como obter M a partir de M_1 e M_2 de tal forma que L(M)=L e M sempre pára. Ou seja, eles provam que L é recursiva.

 ${\it Id\'eia geral}$: Simular M_1 e M_2 de forma intercalada, até que uma das duas pare:

- lacktriangle Executar, alternadamente, movimentos em M_1 e M_2 ;
- f 2 Como toda cadeia w pertence à $L(M_1)$ ou $L(M_2)$, a computação de M sempre pára;
- 3 Se M pára porque M_1 aceita, então M pára e aceita;
- lacktriangle Se M pára porque M_2 aceita, então M pára e rejeita;
- **3** Assim, L(M) = L, M sempre pára, e portanto L é recursiva.

Método

Descrição: Construir M com duas fitas para simular, de forma intercalada, a operação de M_1 na primeira fita e de M_2 na segunda fita:

- lacktriangle Ambas as fitas são inicializadas com a cadeia de entrada w a ser analisada;
- ② Os estados de M são construídos para representar pares de estados de M_1 e M_2 , e também a máquina (1 ou 2) que irá se movimentar em seguida;
- \odot Em cada estado de M, são considerados alternadamente os símbolos presentes na primeira e na segunda fita;
- ullet Todos os estados de M que representam algum estado final de M_1 são finais; os demais estados de M são todos não-finais;
- lacktriangledark Se M_1 (M_2) parar sem aceitar, continuar com M_2 (M_1) .

Detalhamento:

- 1. M copia a entrada w da fita 1 para a fita 2;
- 2. M seleciona M_1 ;
- 3. M tentar executar um movimento de M_1 ;
- 4. Se M_1 não tem movimento possível, M seleciona M_2 e vá para 6;
- 5. Senão, M simula o movimento de M_1 na fita 1 e seleciona M_2 ;
- 6. M tentar executar um movimento de M_2 ;
- 7. Se M_2 não tem movimento possível, vá para 2;
- 8. Senão, M simula o movimento de M_2 na fita 2 e vá para 2.

Algoritmo:

Entrada:

Método

- ▶ MT $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_{01}, B, F_1)$ determinística que aceita L e tem "entrada" como critério de aceitação;
- ▶ MT $M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_{02}, B, F_2)$ determinística que aceita \overline{L} e tem "entrada" como critério de aceitação;

Saída:

- lacksquare MT $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ que aceita L e sempre pára;
- ► M possui duas fitas, é determinística e tem "entrada" como critério de aceitação.

Método

Método:

- $\Gamma = \Gamma_1 \cup \Gamma_2$
- $Q = Q_1 \times Q_2 \times \{1, 2\}$
- $ightharpoonup q_0 = (q_{01}, q_{02}, 1)$
- $F = \{(q_1, q_2, f) \in Q_1 \times Q_2 \times \{1, 2\} | q_1 \in F_1\}$
- $G = \{ (q_1, q_2, f) \in Q_1 \times Q_2 \times \{1, 2\} | q_2 \in F_2 \}$

Método

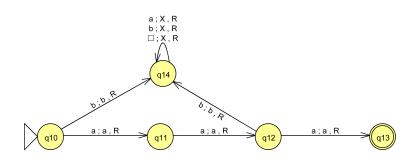
- ▶ $\forall q \in (Q (F \cup G)), q = (q_1, q_2, f), \text{ faça:}$
- ▶ Se f = 1 então:
 - ① $\forall \delta_1(q_1,x)=(q_3,y,D)$, faça: $\delta((q_1,q_2,1),x,\epsilon)=((q_3,q_2,2),(y,D),(\epsilon,S))$
 - $\forall \delta_1(q_1,x)$ não definida, faça: $\delta((q_1,q_2,1),x,\epsilon)=((q_1,q_2,2),(x,S),(\epsilon,S))$
- ightharpoonup Se f=2 então:
 - $\forall \delta_2(q_2,x) = (q_3,y,D), \text{ faça: } \\ \delta((q_1,q_2,2),\epsilon,x) = ((q_1,q_3,1),(\epsilon,S)(y,D))$
 - $\forall \delta_2(q_2,x)$ não definida, faça: $\delta((q_1,q_2,2),\epsilon,x)=((q_1,q_2,1),(\epsilon,S)(x,S))$

Exemplo

Suponha M_1 tal que:

- ► M₁ é determinística;
- $L_1(M_1) = ACEITA(M_1) = aaa(a|b)^*$
- $ightharpoonup REJEITA(M_1) = a|ab(a|b)^*$
- $\blacktriangleright LOOP(M_1) = (aab|b)(a|b)^*$
- ► $ACEITA(M_1) \cup REJEITA(M_1) \cup LOOP(M_1) = \{a, b\}^*$
- $ightharpoonup ACEITA(M_1) \cap REJEITA(M_1) \cap LOOP(M_1) = \emptyset$

Teorema 3 Exemplo

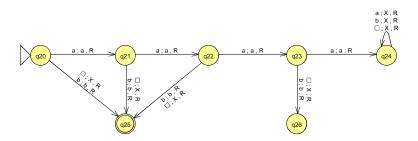


Exemplo

Suponha M_2 tal que:

- ► M₂ é determinística;
- $L_2(M_2) = \overline{L(M_1)} = ACEITA(M_2) = \epsilon |a|aa|(b|ab|aab)(a|b)^*$
- $ightharpoonup REJEITA(M_2) = aaa|aaab(a|b)^*$
- $ightharpoonup LOOP(M_2) = aaaa(a|b)^*$
- ► $ACEITA(M_2) \cup REJEITA(M_2) \cup LOOP(M_2) = \{a, b\}^*$
- ► $ACEITA(M_2) \cap REJEITA(M_2) \cap LOOP(M_2) = \emptyset$

Teorema 3 Exemplo



Teorema 3 Exemplo

	M_2			
		А	R	L
M_1	А	×	aaab aaa	aaaa
	R	abaa aa	×	×
	L	aabb	×	×

Teorema 3 Exemplo

aaab		aaa		
M_1	M_2	M_1	M_2	
Α	R	Α	R	
$(\varepsilon, q_{10}, aaab)$	(ε,q ₂₀ ,aaab)	(ε,q ₁₀ ,aaa)	(ε,q ₂₀ ,aaa)	
(a,q ₁₁ ,aab)	(a,q ₂₁ ,aab)	(a,q ₁₁ ,aa)	(a,q ₂₁ ,aa)	
(aa,q ₁₂ ,ab)	(aa,q ₂₂ ,ab)	(aa,q ₁₂ ,aba)	(aa,q ₂₂ ,a)	
(aaa,q ₁₃ ,b)	(aaa,q ₂₃ ,b)	(aaa, q_{13} , ϵ)	(aaa, q_{23} , ϵ)	
✓	(aaab, q_{26} , ϵ)	✓	×	
	×			

Teorema 3 Exemplo

abaa		aa		
M_1	M_2	M_1	M_2	
R	Α	R	Α	
$(\epsilon, q_{10}, abaa)$	$(\epsilon, q_{20}, abaa)$	(ε,q ₁₀ ,aa)	$(\varepsilon, q_{20}, aa)$	
(a,q ₁₁ ,baa)	(a,q ₂₂ ,baa)	(a,q ₁₁ ,a)	(a,q ₂₁ ,a)	
×	(ab,q ₂₃ ,aa)	(aa, q_{12} , ϵ)	(aa, q_{22} , ϵ)	
	✓	×	(aaX, q_{25} , ϵ)	
			✓	

Teorema 3 Exemplo

aaaa		aabb		
M_1	M_2	$M_\mathtt{1}$	M_2	
Α	L	L	Α	
$(\epsilon, q_{10}, aaaa)$	(ε,q ₂₀ ,aaaa)	$(\epsilon, q_{10}, aabb)$	(ε,q ₂₀ ,aabb)	
(a,q ₁₁ ,aaa)	(a,q ₂₁ ,aaa)	(a,q ₁₁ ,abb)	(a,q ₂₁ ,abb)	
(aa,q ₁₂ ,aa)	(aa,q ₂₂ ,aa)	(aa,q ₁₂ ,bb)	(aa,q ₂₂ ,bb)	
(aaa,q ₁₃ ,a)	(aaa,q ₂₃ ,a)	(aab,q ₁₄ ,b)	(aab,q ₂₅ ,b)	
✓	(aaaaa, q_{24} , ϵ)	(aabX, q_{14} , ϵ)	✓	
	(aaaaaX, q_{24} , ϵ)	(aabXX, q_{14} , ϵ)		
	(aaaaaXX, q_{24} , ϵ)	(aabXXX, q_{14} , ϵ)		

Exemplo

Composição de M_1 e M_2 :

- $ightharpoonup Q_1 = \{q_{10}, q_{11}, q_{12}, q_{13}, q_{14}\};$
- $Q_2 = \{q_{20}, q_{21}, q_{22}, q_{23}, q_{24}, q_{25}, q_{26}\};$
- |Q| = 5 * 7 * 2 = 70;
- $|F| = 1(q_{13}) * 7 * 2 = 14;$
- $|G| = 5 * 1(q_{25}) * 2 = 10;$
- ▶ Estado inicial $q_0 = (q_{10}, q_{20}, 1)$;
- Próximo passo: definir as transições de 70-14-10=46 estados.

Exemplo

Composição de M_1 e M_2 :

- ▶ Estado inicial $q_0 = (q_{10}, q_{20}, 1)$;
- ▶ Como f = 1 então:
 - $\delta((q_{10}, q_{20}, 1), a, \epsilon) = ((q_{11}, q_{20}, 2), (a, R), (\epsilon, S))$ pois $\delta_1(q_{10}, a) = (q_{11}, a, R)$;
 - $\delta((q_{10}, q_{20}, 1), b, \epsilon) = ((q_{14}, q_{20}, 2), (b, R), (\epsilon, S))$ pois $\delta_1(q_{10}, b) = (q_{14}, b, R)$;
 - ▶ $\delta((q_{10},q_{20},1),\Box,\epsilon)=((q_{10},q_{20},2),(\Box,S),(\epsilon,S))$ pois $\delta_1(q_{10},\Box)$ não é definida.

Exemplo

Composição de M_1 e M_2 :

- ► Estado $(q_{11}, q_{20}, 2)$;
- ▶ Como f = 2 então:
 - $\delta((q_{11}, q_{20}, 2), \epsilon, a) = ((q_{11}, q_{21}, 1), (\epsilon, S), (a, R))$ pois $\delta_2(q_{20}, a) = (q_{21}, a, R)$;
 - $\delta((q_{11}, q_{20}, 2), \epsilon, b) = ((q_{11}, q_{25}, 1), (\epsilon, S), (b, R))$ pois $\delta_2(q_{20}, b) = (q_{25}, b, R)$:
 - $\delta((q_{11},q_{20},2),\epsilon,\square)=((q_{11},q_{20},1),(\epsilon,S),(\square,S))$ pois $\delta_2(q_{20},\square)$ não é definida.

As transições dos demais estados são obtidas de forma similar.

Conclusões

- ▶ Toda cadeia w está em L ou \overline{L} ;
- ▶ Portanto, pelo menos uma das duas máquinas M_1 e M_2 sempre pára com w (M_1 aceitando e M_2 rejeitando);
- ightharpoonup Como M pára sempre quando M_1 ou M_2 param, então M sempre pára;
- ightharpoonup M aceita todas as cadeias de L;
- ightharpoonup M rejeita todas as cadeias de \overline{L} .
- ► L é recursiva.

$L imes \overline{L}$ Possibilidades

Considere que as linhas representam L e as colunas representam \overline{L} . As seguintes combinações, e apenas essas, são possíveis:

	Recursiva	RE não-recursiva	Não-RE
Recursiva	✓	-	-
RE não-recursiva	=	-	\checkmark
Não-RE	-	✓	√

- ▶ O Teorema 2 exclui as possibilidades Recursiva/RE não-recursiva, Recursiva/Não-RE, RE não-recursiva/Recursiva e Não-RE/Recursiva;
- ▶ O Teorema 3 exclui a possibilidade RE não-recursiva/RE não-recursiva.

$L \times \overline{L}$

Problemas e seus complementos:

- O complemento de um problema solucionável é sempre um problema solucionável;
 - ▶ Não há loop com nenhuma cadeia de Σ^* ;
- ➤ O complemento de um problema estritamente parcialmente solucionável é totalmente insolúvel:
 - ▶ Como existe pelo menos uma cadeia $w \in \Sigma^* L$ que provoca loop, em $L' = \Sigma^* L$ ela não será aceita;
- ➤ O complemento de um problema totalmente insolúvel pode ser estritamente parcialmente solucionável ou totalmente insolúvel:
 - ▶ Como existe pelo menos uma cadeia $w \in L$ que provoca loop, em $L' = \Sigma^* L$ ela provoca loop também;
 - Se existe uma cadeia $w \in \Sigma^* L$ que provoca loop, em $L' = \Sigma^* L$ ela provoca loop também;

Considere a linguagem L_d :

- ▶ Conforme o Teorema 1, L_d é não-RE;
- ightharpoonup Consequentemente, $\overline{L_d}$ deve ser RE não-recursiva ou não-RE;
- ightharpoonup Certamente $\overline{L_d}$ não é recursiva;
- ► $L_d = \{w_i | w_i \notin L(M_i)\};$
- $\overline{L_d} = \{w_i | w_i \in L(M_i)\};$
- ightharpoonup Conforme será provado mais adiante, $\overline{L_d}$ é RE não-recursiva.

Conceito

- Máquinas de Turing incorporam os programas que elas executam na sua definição;
- Como transformar uma Máquina de Turing em dados para outra Máquina de Turing processar?
- ► Resposta: Máquina de Turing Universal (U);
- ► Aceita como entrada a descrição de uma outra Máquina de Turing e a entrada que essa outra máquina deve processar;
- ► Simula a máquina descrita e produz como resultado o mesmo resultado que a máquina simulada produziria;
- ▶ É universal pois é capaz de executar qualquer algoritmo.

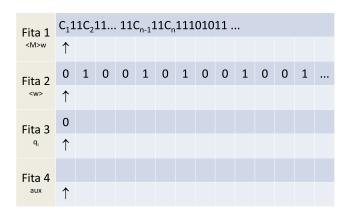
Convenções

U possui quatro fitas:

- A primeira fita contém a descrição da máquina a ser simulada ($\langle M \rangle$) e a sua correspondente entrada (w);
- ▶ A segunda fita é usada para simular a fita da máquina a ser simulada (M); símbolos $X_i, i \geq 1$, são denotados 0^i e são separados na fita pelo símbolo 1; 0 representa 0, 00 representa 1 e 000 representa B;
- ▶ A terceira fita é usada para representar o estado de M; estados $q_i, i \geq 1$, são denotados 0^i ;
- ► A quarta fita é usada para rascunho.

Convenções

Suponha $\langle M \rangle = C_1 11 C_2 11...11 C_{n-1} 11 C_n$ e w=01011... Então:



Inicialização

- 1) U verifica se $\langle M \rangle$ corresponde à descrição de uma Máquina de Turing válida; em caso negativo, U pára e rejeita a entrada (descrições inválidas representam máquinas que aceitam a linguagem vazia, portanto toda entrada deve ser rejeitada);
- 2) U copia a cadeia w da primeira para a segunda fita, codificando os seus símbolos da maneira apropriada (seqüências de 0 separadas pelo símbolo 1);
- 3) $\it U$ posiciona a cabeça de leitura no primeiro símbolo da segunda fita;
- 4) Como, por convenção, o estado inicial de M é $q_1,\ U$ grava o símbolo $0^1=0$ na terceira fita.

Operação

- 5) Se o símbolo gravado na posição corrente da segunda fita é 0^i (símbolo corrente de M) e a cadeia contida na terceira fita é 0^j (estado corrente de M), então U procura, na primeira fita, pela cadeia $0^i10^j10^k10^l10^m$, a qual representa a transição que seria executada por M nessa configuração (lembre-se que M é determinístico);
- 6) Caso não exista tal transição, então M pára e portanto U deve parar também;
- 7) Caso exista tal transição, então U:
 - Modifica o símbolo corrente de M na segunda fita (de 0^j para 0^l)
 - ▶ Modifica o estado corrente de M na terceira fita (de 0^i para 0^k);
 - ▶ Desloca a cabeça de leitura na segunda fita para o próximo símbolo da esquerda (se m=1) ou da direita (se m=2); lembre-se que os símbolos são cadeias de 0 separadas por 1;
 - Se o novo estado for 00 (que representa q_2 , o estado final de M), então U pára e aceita a entrada.

Conclusão

- ightharpoonup U simula M com a entrada w;
- ▶ U pára e aceita $\langle M \rangle w \Leftrightarrow M$ pára e aceita w;
- ▶ U pára e rejeita $\langle M \rangle w \Leftrightarrow M$ pára e rejeita w;
- ▶ U entra em loop infinito com $\langle M \rangle w \Leftrightarrow M$ entra em loop infinito com w;

Conceito

Suponha que $\langle M \rangle$ representa uma codificação de uma MT M sobre o alfabeto $\{0,1\}$. Suponha que w é uma cadeia sobre esse mesmo alfabeto. A "linguagem universal":

$$L_u = \{\langle M \rangle w | M \text{ \'e uma MT que aceita } w\}$$

 $\acute{ ext{e}}$ aceita por U

- ightharpoonup O problema de determinar se uma Máquina de Turing M aceita a cadeia w pode ser traduzido...
- ▶ Pelo problema de determinar se $\langle M \rangle w \in L_u ...$
- ▶ Ou seja, determinar se $\langle M \rangle w \in L(U)$;
- $ightharpoonup L_u = L(U)$ é recursiva, RE não-recursiva ou não-RE?

 L_u é RE não-recursiva

L_u é RE:

lackbox U é uma Máquina de Turing que aceita L_u .

L_u é RE não-recursiva

L_u não é recursiva (Hopcroft):

- ightharpoonup Suponha que L_u seja recursiva;
- ▶ Então, $\overline{L_u}$ também é recursiva;
- ► Considere que M é tal que $L(M) = \overline{L_u}$;
- ightharpoonup Seja M' tal que, com a entrada w:
 - ightharpoonup M' transforma w em w111w;
 - ightharpoonup M' executa M com a entrada w111w;
 - Considere $w = w_i = \langle M_i \rangle$;
 - ▶ M aceita w_i111w_i se e somente se $w_i \notin L(M_i)$, ou seja, se $w_i \in L_d$; caso contrário M rejeita w_i111w_i ;
 - ightharpoonup Suponha que M' aceita quando M aceita e rejeita quando M rejeita;
 - ▶ Logo, M' decide L_d ;
 - ightharpoonup Como L_d é não-RE, a hipótese é falsa e L_u não pode ser recursiva.

L_u é RE não-recursiva

 L_u não é recursiva (Sipser):

- ▶ Suponha que L_u seja recursiva e que $H(\langle M \rangle w)$ decida L_u ;
- ► Considere a máquina D:
 - ▶ D aceita como entrada $\langle M \rangle$;
 - ▶ D executa H com a entrada $\langle M \rangle \langle M \rangle$;
 - lacktriangledown D aceita se H rejeita e rejeita se H aceita.
- ▶ Considere que D receba como entrada $\langle D \rangle$;
- ▶ Se D aceita $\langle D \rangle$ (execução de H) então D rejeita $\langle D \rangle$;
- ▶ Se D rejeita $\langle D \rangle$ (execução de H) então D aceita $\langle D \rangle$;
- ightharpoonup Em qualquer caso, uma contradição; logo, a hipótese é falsa e L_u não é recursiva.

Teorema 4 Diagonalização

Para cada par linha/coluna (i, j), a tabela indica se M_i aceita w_j :

	1	2	3	4	
1	✓			√	
2	✓	✓	✓	✓	
3					
4	✓	✓			

Teorema 4 Diagonalização

Para cada par linha/coluna (i,j), a tabela indica o resultado produzido por H:

	1	2	3	4	
1	✓	×	×	✓	
2	√	√	✓	✓	
3	×	×	×	×	
4	✓	✓	×	×	

Diagonalização

Se existisse a Máquina de Turing D, a contradição aconteceria na posição $(\langle D \rangle, D)$:

	1	2	3	4	 D	
1	✓	×	×	✓	 ✓	
2	√	1	1	1	 1	
3	×	×	×	×	 ×	
4	√	1	×	×	 1	
<d></d>	×	×	✓	✓	 ?	

Teorema 4 Conclusão

Se houvesse solução para o problema de determinar se uma Máquina de Turing não aceita uma cadeia qualquer $(\overline{L_u})$, haveria solução para o problema, mais simples, de determinar se uma Máquina de Turing não aceita uma cadeia específica (L_d) .

Linguagens e complementos

Resumo até este ponto

- $ightharpoonup L_d = \{w_i | w_i \notin L(M_i)\}$ é não-RE;
- $ightharpoonup \overline{L_d} = \{w_i | w_i \in L(M_i)\}$ é RE não-recursiva;
- $ightharpoonup L_u = \{\langle M \rangle w | M$ é uma MT que aceita $w\}$ é RE não-recursiva;
- $ightharpoonup \overline{L_u} = \{\langle M \rangle w | M \text{ \'e uma MT que não aceita } w\}$ é não-RE.

Conceito

- ► Técnica para determinar a decidibilidade de um problema a partir de outro cuja natureza é conhecida;
- Uma redução é uma maneira de converter um problema em outro de tal forma que uma solução para o segundo problema possa ser usada para resolver o primeiro problema;

Exemplos

Uma solução para P_2 é uma solução para P_1 :

- ▶ P₁: orientar-se numa nova cidade; P₂: obter um mapa;
- ▶ P₁: viajar de São Paulo para New York; P₂: comprar uma passagem de avião;
- ▶ P₁: comprar uma passagem de avião; P₂: dispor do dinheiro necessário;
- P₁: dispor do dinheiro necessário;
 P₂: conseguir um trabalho.

Exemplos

Uma solução para P_2 é uma solução para P_1 :

- ▶ P₁: medir a área de um retângulo; P₂: medir o seu comprimento e largura;
- ▶ P₁: resolver um sistema de equações lineares; P₂: inverter uma matriz;
- ▶ P_1 : provar que uma linguagem L não é regular; P_2 : encontrar $w=xyz\in L$ tal que $|w|>n,\ |y|\ge 1$ e, para algum $i\ge 0,\ xy^iz\notin L;$
- $ightharpoonup P_1$: construir um analisador sintático determinístico para uma linguagem L;
 - P_2 : obter uma gramática LR(k) que gera L.

Conceito

Se existe uma redução de P_1 para P_2 , então diz-se que:

- $ightharpoonup P_1$ "não é mais difícil do que" P_2 ;
- $ightharpoonup P_2$ "é no mínimo tão difícil quanto" P_1 .

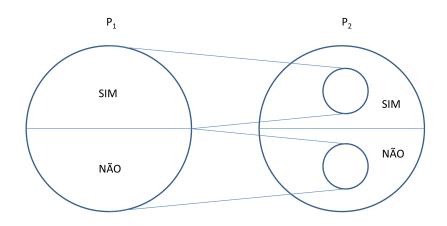
Definição

ightharpoonup Uma redução de P_1 para P_2 é uma função f que mapeia sentenças de P_1 para sentenças de P_2 :

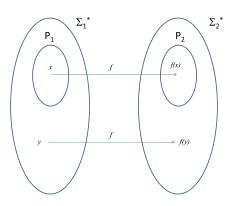
$$w \in P_1 \Leftrightarrow f(w) \in P_2$$

- Uma redução também pode ser vista como uma MT (algoritmo) que mapeia sentenças de P_1 em sentenças de P_2 ;
- A função de mapeamento não necessita ser sobrejetora.

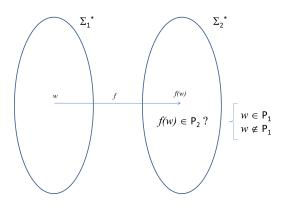
Redução de P_1 para P_2



Redução de P_1 para P_2



Redução de P_1 para P_2



Teorema 5 Enunciados

Se f é uma redução de P_1 para P_2 , então:

- Se P_1 é indecidível, então P_2 também é indecidível;
- $oxed{2}$ Se P_1 é não-RE, então P_2 também é não-RE.

P_1 indecidível $\Rightarrow P_2$ indecidível

Suponha que P_2 seja decidível. Então é possível combinar o algoritmo que decide P_2 com a redução f para obter um algoritmo que decide P_1 .

- ▶ Seja $w \in \Sigma_1^*$ (Σ_1 é o alfabeto de P_1);
- ightharpoonup Obter f(w);
- $lackbox{\ }$ Como P_2 é decidível, por hipótese, é possível determinar se $f(w)\in P_2$;
- lacktriangle Em caso afirmativo, e como f é uma redução, é certo que $w\in P_1$;
- ▶ Em caso negativo, e como f é uma redução, é certo que $w \notin P_1$;
- ▶ Em qualquer caso é possível determinar se $w \in P_1$;
- ► Logo, P₁ seria decidível;
- lacktriangle Mas isso contrária a hipótese, portanto P_2 não pode ser decidível.

Teorema 5 P_1 não-RE $\Rightarrow P_2$ não-RE

Suponha que P_2 seja RE. Então é possível combinar a MT M_2 que aceita P_2 com a redução f para obter uma MT M_1 que aceita P_1 .

- ▶ Seja $w \in \Sigma_1^*$;
- ightharpoonup Obter f(w);
- \blacktriangleright Executar M_2 com a entrada f(w);
- ▶ Se M_2 aceita f(w), então $w \in P_1$;
- Se M_2 não aceita f(w) (M_2 pára e rejeita ou entra em loop), então $w \notin P_1$;
- ▶ Logo, é possível construir M_1 que aceita P_1 ;
- \blacktriangleright Mas isso contrária a hipótese, portanto P_2 não pode ser RE.

Enunciados com corolários

Se f é uma redução de P_1 para P_2 , então:

- Se P_1 é indecidível, então P_2 também é indecidível; Se P_2 é decidível, então P_1 também é decidível;
- ② Se P_1 é não-RE, então P_2 também é não-RE; Se P_2 é RE, então P_1 também é RE.

Teorema 5 Estratégias

Aplicação do teorema (parte 1):

- ▶ Para demonstrar que um problema P_2 de natureza desconhecida é indecidível:
 - ▶ Obter uma redução de um problema P_1 , reconhecidamente indecidível, para P_2 ;
- Para demonstrar que um problema P_1 de natureza desconhecida é decidível:
 - ▶ Obter uma redução de P_1 para um problema P_2 , reconhecidamente decidível;

Teorema 5 Estratégias

Aplicação do teorema (parte 2):

- Para demonstrar que um problema P2 de natureza desconhecida é não-RE:
 - Obter uma redução de um problema P_1 , reconhecidamente não-RE, para P_2 ;
- ightharpoonup Para demonstrar que um problema P_1 de natureza desconhecida é RE:
 - lackbox Obter uma redução de P_1 para um problema P_2 , reconhecidamente RE;

Reduções com L_u e L_d

- L_u é indecidível (RE não-recursivo);
- 2 L_d é não-RE;
- $lacktriangleq L_u$ pode ser usada para demonstrar que um problema P qualquer (RE ou não-RE) é indecidível:
 - ▶ Basta obter uma redução de L_u para P;
- lacktriangle L_d pode ser usada para demonstrar que um problema P é não-RE:
 - ▶ Basta obter uma redução de L_d para P;
- **1** L_d não pode ser usada para demonstrar a indecidibilidade de um problema que é RE porém é não-recursivo (pois L_d é não-RE e só reduz para P não-RE); para esses casos deve-se usar L_u ;
- $lacktriangleq L_u$ não pode ser usada para demonstrar que um problema é não-RE (pois L_u é RE não-recursivo e só reduz para P não-recursivo, sem discriminar se P é RE ou não-RE); para esses casos deve-se usar L_d .

Conceito

Suponha que $\langle M \rangle$ representa uma codificação de M sobre o alfabeto $\{0,1\}$. Suponha que w é uma cadeia sobre esse mesmo alfabeto. A "linguagem da parada" é definida como:

$$PARA_{MT} = \{\langle M, w \rangle | M \text{ pára com a entrada } w\}$$

- Corresponde ao problema fundamental de determinar se um programa qualquer pára com uma entrada qualquer;
- $ightharpoonup PARA_{MT}$ é decidível ou indecidível?

$PARA_{MT}$ é indecidível através de redução

Função f que reduz L_u para $PARA_{MT}$:

- $ightharpoonup L_u = \{\langle M, w \rangle | M \text{ aceita a entrada } w\}$
- ▶ $PARA_{MT} = \{\langle M', w \rangle | M' \text{ pára com a entrada } w\}$
- ► A redução f é computada pela seguinte MT:
 - A partir da entrada $\langle M, w \rangle$, construir M' de tal forma que M' simula M com a entrada w:
 - ightharpoonup Se M aceita w, então M' aceita w,
 - Se M rejeita w, então M' entra em loop (e, naturalmente, se M entra em loop, então M' também entra em loop);
- $\blacktriangleright \langle M, w \rangle \in L_u \Leftrightarrow \langle M', w \rangle \in PARA_{MT};$
- ightharpoonup Como L_u é indecidível, $PARA_{MT}$ também é indecidível.

$PARA_{MT}$ é indecidível através de redução

Obtenção de $\langle M', w \rangle$ a partir de $\langle M, w \rangle$:

- ightharpoonup M' simula M com a entrada w;
- ▶ Se M aceita w, $\langle M, w \rangle \in L_u$ e M' deve aceitar w, pois dessa forma $\langle M', w \rangle \in PARA_{MT}$;
- ▶ Se M rejeita w, $\langle M, w \rangle \notin L_u$ e M' deve entrar em loop infinito, pois dessa forma $\langle M', w \rangle \notin PARA_{MT}$;
- ▶ Se M entra em loop infinito com w, $\langle M, w \rangle \notin L_u$ e M' entra automaticamente em loop infinito também. Portanto, $\langle M', w \rangle \notin PARA_{MT}$;

Logo, $\langle M, w \rangle \in L_u \Leftrightarrow \langle M', w \rangle \in PARA_{MT}$

Teorema 6 $PARA_{MT}$ é RE

Basta simular M com a entrada w e gerar, na saída, o mesmo resultado da simulação.

- ▶ $PARA_{MT} = \{\langle M', w \rangle | M' \text{ pára com a entrada } w \}$ é RE não-recursiva, portanto o problema é parcialmente solucionável;
- ▶ $\overline{PARA_{MT}} = \{\langle M', w \rangle | M' \text{ entra em loop com a entrada } w\}$, no entanto, é não-RE, e portanto completamente insolúvel.

PARA_{MT} é indecidível através de contradição

Suponha que $PARA_{MT}$ é decidível. Então, a partir da MT R que decide $PARA_{MT}$, é possível obter uma outra MT S que decide L_u :

- ▶ Executar R sobre a entrada $\langle M, w \rangle$;
- ▶ Se R rejeita, S também rejeita;
- lackbox Se R aceita, simular M com a entrada w até M parar;
- Se M aceita, S também aceita;
- ▶ Se M rejeita, S também rejeita.

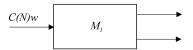
Se R decide $PARA_{MT}$, então S decide L_u . Como é sabido que L_u é indecidível, a hipótese de que R existe é falsa e $PARA_{MT}$ é indecidível.

$PARA_{MT}$ é indecidíve \mid através de diagramas

Supor que $PARA_{MT}$ é decidível. Então existe M_1 :

M_i pára e aceita C(N)w:

N pára com a entrada w



M_1 pára e rejeita C(N)w:

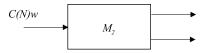
N não pára com a entrada w

$PARA_{MT}$ é indecidível através de diagramas

Construir M_2 a partir de M_1 :

M_2 executa uma sequência infinita de movimentações:

N pára com a entrada w

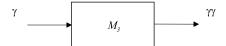


M_2 pára e rejeita C(N)w:

N não pára com a entrada w

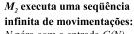
PARA_{MT} é indecidível através de diagramas

Construir M_3 :

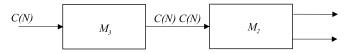


$PARA_{MT}$ é indecidível através de diagramas

Combinar M_3 e M_2 :



N pára com a entrada C(N)

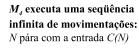


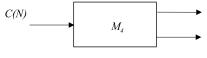
M_2 pára:

N não pára com a entrada C(N)

$PARA_{MT}$ é indecidível através de diagramas

Renomear para M_4 :



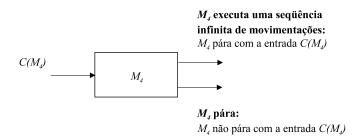


M_4 pára:

N não pára com a entrada C(N)

$PARA_{MT}$ é indecidível através de diagramas

Fornecer para M_4 a sua própria descrição:



PARA_{MT} é indecidível através de diagramas

Conclusão:

- Por um lado, temos a informação de que, ao analisar a cadeia $C(M_4)$, se a máquina M_4 parar, então M_4 executa uma seqüência infinita de movimentações;
- Por outro, que ao analisar a cadeia $C(M_4)$, se M_4 não parar, então M_4 pára. Tem-se, portanto, uma contradição;
- Logo, a hipótese inicial não é válida, ou seja, não existe M_1 que decida $PARA_{MT}$;
- $ightharpoonup PARA_{MT}$ é indecidível.

Linguagens e complementos

Resumo até este ponto

- $L_d = \{w_i | w_i \notin L(M_i)\}$ é não-RE;
- $ightharpoonup \overline{L_d} = \{w_i | w_i \in L(M_i)\}$ é RE não-recursiva;
- $ightharpoonup L_u = \{\langle M \rangle w | M$ é uma MT que aceita $w\}$ é RE não-recursiva;
- $ightharpoonup \overline{L_u} = \{\langle M \rangle w | M$ é uma MT que não aceita $w\}$ é não-RE;
- ▶ $PARA_{MT} = \{\langle M', w \rangle | M' \text{ pára com a entrada } w \}$ é RE não-recursiva;
- $ightharpoons \overline{PARA_{MT}} = \{\langle M', w
 angle | M' ext{ entra em loop com a entrada } w \}$ é não-RE.

Definições

Considere $\langle M \rangle$ como a codificação de uma MT M sobre o alfabeto $\{0,1\}.$ Então:

- $L_e = \{ \langle M \rangle | L(M) = \emptyset \}$
- $L_{ne} = \{ \langle M \rangle | L(M) \neq \emptyset \}$
- $L_e = \overline{L_{ne}}$

L_{ne} é RE

 $\underline{\mathsf{Teorema}}$: A linguagem L_{ne} é recursivamente enumerável.

- 1. Construir uma MT M que aceita como entrada a codificação de uma outra MT M^\prime ;
- 2. M opera de forma não-determinística, fazendo escolhas de cadeias arbitrárias para serem testadas em M';
- 3. Em cada ramo da sua execução não-determinística, M gera uma cadeia e testa se M^\prime aceita a mesma;
- 4. Para isso, M simula a máquina U que aceita a linguagem L_u ;
- 5. Se algum caminho de M' for de aceitação, então M' pára e aceita a sua entrada (M);

L_{ne} é RE

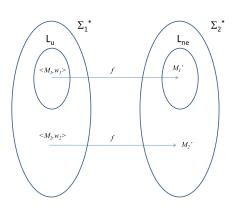
Em resumo:

- ightharpoonup Se M' aceita alguma cadeia, M "adivinha" essa cadeia e aceita M';
- ▶ Se M' não aceita nenhuma cadeia, então não há cadeia que conduza à aceitação em M' e M não aceita M' (nesse caso, M pode rejeitar M' ou entrar em loop);
- ▶ Portanto, $L(M) = L_{ne}$.

Idéia geral:

- ▶ Fazer uma redução de L_u para L_{ne} ;
- ▶ Construir M' a partir de $\langle M, w \rangle$ tal que:
 - ▶ Se $w \in L(M)$, então $L(M') \neq \emptyset$;
 - ▶ Se $w \notin L(M)$, então $L(M') = \emptyset$;
- ightharpoonup M' ignora a sua entrada e simula M com a entrada w;
- ightharpoonup Se M aceita w, M' também aceita a sua entrada, qualquer que seja ela.

- ▶ M_1 aceita $w_1 \Rightarrow \langle M_1, w_1 \rangle \in L_u \Rightarrow L(M_1') \neq \emptyset \Rightarrow \langle M_1' \rangle \in L_{ne}$;
- ▶ M_2 não aceita $w_2 \Rightarrow \langle M_2, w_2 \rangle \notin L_u \Rightarrow L(M_2') = \emptyset \Rightarrow \langle M_2' \rangle \notin L_{ne}$;



<u>Teorema</u>: A linguagem L_{ne} não é recursiva.

- 1. É suficiente provar a existência de um algoritmo que efetua a redução de L_u para L_{ne} ;
- 2. O algoritmo deve mapear $\langle M, w \rangle$ em M' de tal forma que $w \in L(M) \Leftrightarrow L(M') \neq \emptyset$;
- 3. A construção de M' a partir de $\langle M, w \rangle$ é detalhada a seguir;

- 4. M' ignora a sua entrada x, qualquer que seja ela. M' substitui x por $\langle M,w\rangle$, tomando o cuidado de trocar os símbolos finais de x por brancos, caso $|x|>|\langle M,w\rangle|$;
- 5. M' posiciona a cabeça de leitura/escrita sobre o primeiro símbolo da cadeia $\langle M, w \rangle$;
- 6. M' simula a Máquina Universal U com a entrada $\langle M, w \rangle$;
- 7. Se U aceita $\langle M,w \rangle$, então M' pára e aceita a sua entrada, qualquer que seja ela e $L(M') \neq \emptyset$ (e se U não aceita $\langle M,w \rangle$, então M' não aceita nenhuma entrada e $L(M') = \emptyset$).

Em resumo:

- **E**xiste um algoritmo que reduz L_u para L_{ne} ;
 - ▶ M' aceita qualquer cadeia de entrada (e portanto $\langle M' \rangle \in L_{ne}$) sse $w \in L(M)$ (ou seja, se $\langle M, w \rangle \in L_u$);
 - ► M' não aceita nenhuma cadeia de entrada (e portanto $\langle M' \rangle \notin L_{ne}$) sse $w \notin L(M)$ (ou seja, se $\langle M, w \rangle \notin L_u$);
- ightharpoonup Como L_u é indecidível, então L_{ne} é indecidível.

Suponha que L_{ne} fosse decidível. Então seria possivel decidir L_u , da seguinte forma:

- ▶ Fazer a redução de $\langle M, w \rangle$ para M';
- ▶ Decidir se $L(M') \neq \emptyset$, ou seja, se $\langle M' \rangle \in L_{ne}$;
- ▶ Em caso afirmativo, $\langle M, w \rangle \in L_u$, ou seja, $w \in L(M)$;
- ▶ Em caso negativo, $\langle M, w \rangle \notin L_u$, ou seja, $w \notin L(M)$;

Mas como é sabido que L_u não é recursiva, então a suposição de que L_{ne} é recursiva é falsa.

L_e é não-RE

<u>Teorema</u>: L_e não é recursivamente enumerável.

- 1. Suponha que L_e seja recursivamente enumerável;
- 2. Portanto, de acordo com um teorema anterior, tanto L_e quanto $\overline{L_e}$ devem ser recursivas:
- 3. Mas $\overline{L_e} = L_{ne}$:
- 4. Além disso, foi demonstrado que L_{ne} não é recursiva;
- 5. Logo, L_e não é recursivamente enumerável.

Linguagens e complementos

Resumo até este ponto

- $ightharpoonup L_d = \{w_i | w_i \notin L(M_i)\}$ é não-RE;
- $ightharpoonup \overline{L_d} = \{w_i | w_i \in L(M_i)\}$ é RE não-recursiva;
- $ightharpoonup L_u = \{\langle M \rangle w | M$ é uma MT que aceita $w\}$ é RE não-recursiva;
- ullet $\overline{L_u} = \{\langle M \rangle w | M$ é uma MT que não aceita $w\}$ é não-RE;
- ▶ $PARA_{MT} = \{\langle M', w \rangle | M' \text{ pára com a entrada } w \}$ é RE não-recursiva;
- $ightharpoonup \overline{PARA_{MT}} = \{\langle M', w
 angle | M' ext{ entra em loop com a entrada } w \}$ é não-RE;
- $L_e = \{\langle M \rangle | L(M) = \emptyset \}$ é não-RE;
- $ightharpoonup L_{ne} = \overline{L_e} = \{\langle M \rangle | L(M) \neq \emptyset \}$ é RE não-recursiva.

Enunciado

<u>Teorema</u>: Qualquer propriedade não-trivial das linguagens recursivamente enumeráveis é indecidível.

- ► Propriedade?
- ► Não-trivial?

Propriedade não-trivial

Propriedade:

- ► Condição que deva ser satisfeita por um grupo de linguagens;
- ▶ Um conjunto de linguagens que satisfazem uma certa condição.

Não-trivial:

- ► Condição que seja satisfeita por pelo menos uma linguagem e que não seja satisfeita por pelo menos uma linguagem;
- ► Caso contário, ou seja, se a propriedade é satisfeita por todas as linguagens ou então não e satisfeita por nenhuma linguagem, então ela é dita "trivial";
- ► Propriedade não-trivial exclui todas as propriedades triviais.

As linguagens RE serão representadas pelas MT que as aceitam, pois essas máquinas são descrições finitas de tais linguagens.

Exemplos

Dada uma $\mathsf{MT}\ M$ qualquer:

- $\blacktriangleright L(M) = \emptyset? L(M) \neq \emptyset?$
- \bullet $\epsilon \in L(M)$?
- $\mathbf{v} \in L(M)$?
- ▶ L(M) é finita? L(M) é infinita?
- ightharpoonup L(M) contém pelo menos duas cadeias?
- ightharpoonup L(M) é regular?
- ightharpoonup L(M) é livre de contexto?
- $\blacktriangleright L(M) = \Sigma^*$?
- ► $L(M) = L(M)^R$?
- ▶ etc.

Exemplos

- ▶ $L(M) = \emptyset$?

 Demonstrada indecidível anteriormente através do problema de decisão L_e ($\langle M \rangle \in L_e$?)
- ▶ $L(M) \neq \emptyset$?

 Demonstrada indecidível anteriormente através do problema de decisão L_{ne} ($\langle M \rangle \in L_{ne}$?)
- Demais propriedades:

Considerar \mathcal{P} como o conjunto de todas as linguagens que satisfazem a propriedade;

Considerar a linguagem $L_{\mathcal{P}} = \{\langle M \rangle | L(M) \in \mathcal{P}\};$

 $L_{\mathcal{P}}$ é o conjunto de todas as codificações de Máquinas de Turing que aceitam as linguagens pertencentes à \mathcal{P} ;

Determinar se $L(M) \in \mathcal{P}$ é o mesmo que determinar se $\langle M \rangle \in L_{\mathcal{P}}$.

Demonstração

<u>Teorema</u>: Qualquer propriedade não-trivial das linguagens recursivamente enumeráveis é indecidível.

- 1. Seja \mathcal{P} uma propriedade não-trivial das linguagens RE;
- 2. Suponha que a linguagem vazia (\emptyset) não pertence à \mathcal{P} ;
- 3. Como $\mathcal P$ é não-trivial, então existe pelo menos uma linguagem $L\in\mathcal P$;
- 4. Considere essa linguagem L e M_L tal que $L = L(M_L)$;
- 5. Fazer uma redução de L_u para $L_{\mathcal{P}}$ (conforme explicado a seguir):
 - M aceita $w \Rightarrow M'$ aceita L, portanto $M' \in L_{\mathcal{P}}$;
 - ▶ M não aceita $w \Rightarrow M'$ aceita \emptyset , portanto $M' \notin L_{\mathcal{P}}$.
- 6. Como L_u é indecidível, conclui-se que $L_{\mathcal{P}}$ também é indecidível.

Redução de L_u para $L_{\mathcal{P}}$

Obtenção de M' a partir de $\langle M,w\rangle$ tal que $\langle M,w\rangle\in L_u\Leftrightarrow \langle M'\rangle\in L_{\mathcal{P}}$: (lembrar que $L=L(M_L)\in\mathcal{P}$)

- 1. M' simula a Máquina Universal U com a entrada $\langle M, w \rangle$;
- 2. Se M não aceita w (ou seja, se $\langle M, w \rangle \notin L_u$), então M' não faz nada. Portanto, M' não aceita a sua entrada, qualquer que seja ela; logo, $L(M') = \emptyset$; como $\emptyset \notin \mathcal{P}$, então $\langle M' \rangle \notin L_{\mathcal{P}}$;
- 3. Se M aceita w, então M' simula M_L com a sua entrada original, qualquer que seja ela; logo, L(M')=L; como $L\in\mathcal{P}$, então $\langle M'\rangle\in L_{\mathcal{P}};$

Conclusão

A demonstração do teorema considerou que a linguagem vazia (\emptyset) não pertence à \mathcal{P} ;

E se a linguagem vazia (\emptyset) pertencer à \mathcal{P} ?

- ightharpoonup Considerar $\overline{\mathcal{P}}$
- ightharpoonup Dessa maneira, $\emptyset \notin \overline{\mathcal{P}}$
- ightharpoonup Considerar $L_{\overline{\mathcal{D}}}$
- lacktriangle Aplicar os mesmos passos da demonstração do teorema para $L_{\overline{\mathcal{D}}}$
- lacktriangle Conclui-se que $L_{\overline{\mathcal{D}}}$ não é recursiva
- lacksquare Observar que $L_{\overline{\mathcal{P}}}=\overline{L_{\mathcal{P}}}$
- Se $\overline{L_P}$ não é recursiva, então L_P não é recursiva, pois o complemento de uma linguagem recursiva é também uma linguagem recursiva;
- lacktriangle Portanto $L_{\mathcal{P}}$ não é recursiva da mesma forma.

Exemplo

O problema de determinar se a linguagem aceita por uma Máquina de Turing é livre de contexto é indecidível.

- ▶ Pelo Teorema de Rice, é suficiente provar que "ser livre de contexto" é uma propriedade não-trivial das linguagens recursivamente enumeráveis:
- Ou seja, basta apresentar duas linguagens RE, uma que seja livre de contexto e outra que não seja;
- lacktriangledown A linguagem $\{a^ib^ic^i|i\geq 0\}$ é RE mas não é livre de contexto;
- ▶ A linguagem $\{a^ib^i|i\geq 0\}$ é RE e livre de contexto.

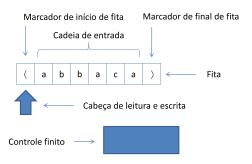
E se \mathcal{P} for trivial?

Então $\mathcal P$ é decidida por uma MT que sempre aceita (se $\mathcal P$ contém todas as linguagens) ou sempre rejeita (se $\mathcal P=\emptyset$). O teorema, nesses casos, não pode ser aplicado:

- ▶ P contém todas as linguagens ⇒ o passo 2 da prova do teorema não é verificado;
- $ightharpoonup \mathcal{P} = \emptyset \Rightarrow$ o passo 3 da prova do teorema não é verificado;

Conceito

Um Autômato Linearmente Limitado (ALL), também conhecido como Máquina de Turing com Fita Limitada, é uma Máquina de Turing na qual o tamanho da fita de entrada é limitada ao comprimento da cadeia a ser analisada.



25 de majo de 2010

Formalização

Um Autômato Linearmente Limitado (ALL) é uma 8-upla:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \langle, \rangle, F)$$

onde:

- ▶ Q é o conjunto de estados;
- $\triangleright \Sigma$ é o alfabeto de entrada:
- $ightharpoonup \Gamma$ é o alfabeto de símbolos que podem ser lidos e/ou escritos na fita, $\Sigma \subseteq \Gamma$;
- \triangleright δ é a função de transição;
- ightharpoonup \langle e \rangle são os símbolos que delimitam a cadeia de entrada na fita, $\langle \notin \Gamma, \rangle \notin \Gamma$;
- F é o conjunto de estados finais.

O ALL não pode se movimentar para à direita do símbolo > nem para a esquerda do símbolo < e nem pode substituí-los por outros símbolos.

Observações

- Um ALL é um caso particular de MT em que a movimentação da cebeça de leitura/escrita é limitada ao trecho da fita que contém a cadeia de entrada a ser analisada;
- A quantidade de memória de trabalho disponível depende do alfabeto Γ e cresce linearmente com o comprimento da cadeia de entrada (por isso o nome "Linearmente Limitado");
- ► Demonstra-se que a classe das linguagens reconhecidas pelos ALL coincide com a classe das linguagens geradas pelas gramáticas sensíveis ao contexto (a menos da cadeia vazia):

Quantidade máxima de configurações

- A configuração é uma tripla composta por estado, posição da cabeça de leitura/escrita na fita e conteúdo da fita;
- 2. M possui |Q| estados distintos;
- 3. A cabeça de leitura/escrita pode se encontrar em n+2 posições distintas;
- 4. Existem $|\Gamma|^n$ combinações diferentes de conteúdo para a fita de entrada;
- 5. Portanto, existem $|Q|*(n+2)*|\Gamma|^n$ configurações distintas para M.

Aceitação em Autômatos Linearmente Limitados:

$$A_{ALL} = \{\langle M, w \rangle | M \text{ \'e um } ALL \text{ que aceita a cadeia } w\}$$

Teorema: A_{ALL} é uma linguagem decidível.

- 1. Suponha que o ALL seja $M=(Q,\Sigma,\Gamma,\delta,q_0,\langle,\rangle,F)$;
- 2. Suponha |w|=n;
- 3. Construir M' que simula M com a entrada w:
 - ▶ Simular até que M pare ou até que tenham sido executadas $|Q|*(n+2)*|\Gamma|^n-1$ movimentações;
 - lacktriangle Se M pára e aceita, então M' pára e aceita;
 - lacktriangle Se M pára e rejeita, então M' pára e rejeita;
 - Se M não parou, então M' rejeita.

Importante observar:

- O problema da aceitação em ALLs é decidível;
 (a quantidade máxima de configurações distintas que o ALL pode assumir é conhecida e essa informação é usada para detectar loops)
- ightharpoonup O problema da aceitação em MTs é indecidível. (não existe limitação para a quantidade máxima de configurações distintas que a MT pode assumir)

História de computação

Uma "história de computação" de uma MT M sobre uma cadeia de entrada w é a seqüência de configurações $C_1C_2...C_n$ que M assume durante a análise de w.

- ▶ Se $w \in L(M) = ACEITA(M)$ então $C_1C_2...C_n$ é uma "história de computação de aceitação" onde C_1 é a configuração inicial, C_n é configuração final de aceitação e C_i segue de forma legítima C_{i-1} , para $1 < i \le n$;
- ▶ Se $w \in REJEITA(M)$ então $C_1C_2...C_n$ é uma "história de computação de rejeição" onde C_1 é a configuração inicial, C_n é configuração final de rejeição e C_i segue de forma legítima C_{i-1} , para $1 < i \leq n$;
- Se $w \in LOOP(M)$ então $C_1C_2...C_n...$ é uma seqüência infinita de configurações.

História de computação

Sejam M e w:

- Se M é determinística, então existe uma única história de computação (de aceitação ou de rejeição) para w;
- ightharpoonup Se M é não-determinística, então podem existir várias histórias de computação para w (finitas ou infinitas).

Vacuidade da linguagem aceita por um autômato linearmente limitado:

$$V_{ALL} = \{\langle M \rangle | M \text{ \'e um } ALL \text{ e } L(M) = \emptyset \}$$

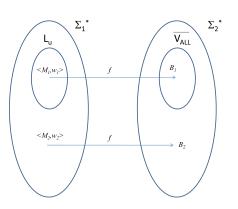
Teorema: V_{ALL} é uma linguagem indecidível.

- ▶ Suponha que V_{ALL} é decidível;
- ▶ Logo, $\overline{V_{ALL}}$ também é decidível;
- lacktriangle Fazer uma redução de L_u para $\overline{V_{ALL}}$ usando histórias de computação;
- ightharpoonup Se $\overline{V_{ALL}}$ fosse decidível, então L_u também seria;
- ightharpoonup Como L_u não é decidível, segue que a hipótese é falsa, $\overline{V_{ALL}}$ não é decidível e V_{ALL} não é decidível.

Redução de L_u para $\overline{V_{ALL}}$:

- ▶ Construir um ALL B a partir de $\langle M, w \rangle$ tal que: $\langle M, w \rangle \in L_u \Leftrightarrow \langle B \rangle \in \overline{V_{ALL}}$
- ▶ O ALL B é construído de forma que L(B) compreende todas as histórias de computação de aceitação de M para w;
- ▶ Se M rejeita w, ou seja, se $\langle M,w\rangle \notin L_u$, então $L(B)=\emptyset$ e $\langle B\rangle \notin \overline{V_{ALL}};$
- ▶ Se M aceita w, ou seja, se $\langle M, w \rangle \in L_u$, então $L(B) \neq \emptyset$ e $\langle B \rangle \in \overline{V_{ALL}}$.

- ▶ M_1 aceita $w_1 \Rightarrow \langle M_1, w_1 \rangle \in L_u \Rightarrow L(B_1) \neq \emptyset \Rightarrow \langle B_1 \rangle \in \overline{V_{ALL}};$
- $lackbox{M}_2$ não aceita $w_2\Rightarrow\langle M_2,w_2
 angle\notin L_u\Rightarrow L(B_2)=\emptyset\Rightarrow\langle B_2
 angle\notin \overline{V_{ALL}};$



Construção de B a partir de $\langle M, w \rangle$:

- 1. Suponha que a entrada para $B \in C_1 \# C_2 \# ... \# C_n$;
- 2. As três condições seguintes devem ser válidas;
- 3. B verifica se C_1 é uma configuração inicial válida para M com a cadeia w:
 - $C_1 = q_0 w$ pode ser verificado conhecendo-se M e w;
- 4. B verifica se C_i segue de forma legítima C_{i-1} , para $1 < i \le n$: C_i deve corresponder à combinação da configuração C_{i-1} com a aplicação de uma transição de M;
- 5. B verifica se C_n é uma configuração de aceitação para M: $C_n = \alpha q_f \beta$ pode ser verificado conhecendo-se M.

Examinando por outro ângulo:

- ▶ Deseja-se determinar se $\langle M, w \rangle \in L_u$;
- lacksquare Suponha que V_{ALL} é decidível por uma MT R;
- ▶ A partir de $\langle M, w \rangle$ obter o ALL B conforme descrito;
- ▶ Executar R com a entrada $\langle B \rangle$;
- ▶ Se R aceita, isso significa que L(B) é vazia e portanto que $w \notin L(M)$, ou seja, $\langle M, w \rangle \notin L_u$;
- ▶ Se R rejeita, isso significa que L(B) é não-vazia e portanto que $w \in L(M)$, ou seja, $\langle M, w \rangle \in L_u$;
- ▶ Logo, seria possível decidir L_u ;
- lacktriangle Mas isso é uma contradição e portanto V_{ALL} não é decidível.

Problema $TODAS_{GLC}$

Totalidade da linguagem gerada por uma gramática livre de contexto:

$$TODAS_{GLC} = \{\langle G \rangle | G \text{ \'e uma } GLC \text{ e } L(G) = \Sigma^* \}$$

<u>Teorema</u>: $TODAS_{GLC}$ é uma linguagem indecidível.

- ightharpoonup Suponha que $TODAS_{GLC}$ é decidível;
- ightharpoonup Logo, $\overline{TODAS_{GLC}}$ também é decidível;
- Fazer uma redução de L_u para $\overline{TODAS_{GLC}}$ usando histórias de computação;
- lacktriangle Se $\overline{TODAS_{GLC}}$ fosse decidível, então L_u também seria;
- ▶ Como L_u não é decidível, segue que a hipótese é falsa, $\overline{TODAS_{GLC}}$ não é decidível e $TODAS_{GLC}$ não é decidível.

Problema $TODAS_{GLC}$

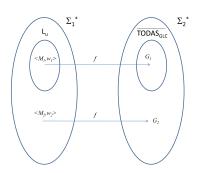
Redução de L_u para $\overline{TODAS_{GLC}}$

- ► Construir uma GLC G a partir de $\langle M, w \rangle$ tal que: $\langle M, w \rangle \in L_u \Leftrightarrow \langle G \rangle \in \overline{TODAS_{GLC}}$
- G gera todas as histórias de computação que não são de aceitação para M com w;
 - G gera todas as histórias se e apenas se $w \notin M$;
 - G não gera todas as hitórias se e apenas se $w \in M$; nesse caso, deve G falhar em gerar justamente a história de computação de aceitação para w em M;

Redução de L_u para $\overline{TODAS_{GLC}}$ (resumo)

- ▶ Se M não aceita w, ou seja, se $\langle M,w\rangle \notin L_u$, então G não falha em gerar nenhuma história de computação, $L(G)=\Sigma^*$ e $L(G)\notin \overline{TODAS_{GLC}}$;
- ▶ Se M aceita w, ou seja, se $\langle M, w \rangle \in L_u$, então G falha em gerar a história de computação de aceitação de w em M, $L(B) \neq \Sigma^*$ e $\langle G \rangle \in \overline{TODAS_{GLC}}$.

- ▶ M_1 aceita $w_1 \Rightarrow \langle M_1, w_1 \rangle \in L_u \Rightarrow L(G_1) \neq \Sigma^* \Rightarrow \langle G_1 \rangle \in \overline{TODAS_{GLC}};$
- ▶ M_2 não aceita $w_2 \Rightarrow \langle M_2, w_2 \rangle \notin L_u \Rightarrow L(G_2) = \Sigma^* \Rightarrow \langle G_2 \rangle \notin \overline{TODAS_{GLC}};$



Construção de G a partir de $\langle M, w \rangle$:

- 1. G gera todas as histórias de computação que não são de aceitação para M com w, usando para isso um certo alfabeto Σ ;
- 2. Histórias de computação de M com w tem o formato $C_1 \# C_2 \# ... \# C_n$, sobre o alfabeto Σ ;
- 3. As sentenças de L(G) devem satisfazer as três condições seguintes;

- 4. G gera todas as histórias de computação tais que C_1 <u>não</u> é uma configuração inicial válida para M com a cadeia w: Pode ser feito conhecendo-se M e w;
- 5. G gera todas as histórias de computação tais que C_i <u>não</u> segue de forma legítima C_{i-1} , para $1 < i \le n$: Pode ser feito conhecendo-se M e w;
- 6. G gera todas as histórias de computação tais que C_n não é uma configuração de aceitação para M: Pode ser feito conhecendo-se M.

Construção de G a partir de $\langle M, w \rangle$:

- Para a linguagem especificada anteriormente, projetar um autômato de pilha não-determinístico (APN) é mais fácil do que projetar a gramática diretamente;
- lacksquare Para obter G, iremos inicialmente obter um APN D que aceita L(G);
- ightharpoonup Finalmente, o APN D pode ser convertido para uma GLC G.

Construção do APN D a partir de $\langle M, w \rangle$:

- 1. A cadeia de entrada para D é uma história de computação sobre o alfabeto Σ ;
- 2. D seleciona, de forma não-determinística, qual das três condições ele irá testar;
- 3. No primeiro ramo, D aceita se C_1 <u>não</u> é uma configuração inicial válida para M com a cadeia w;
- 4. No segundo ramo, D seleciona não-determinísticamente um par de configurações C_i (com $i \geq 3$ e ímpar) e C_{i-1} para analisar:
 - lacktriangledown D aceita se C_i <u>não</u> segue de forma legítima C_{i-1}
- 5. No terceiro ramo, D aceita se C_n não é uma configuração de aceitação para M.

Observações:

- No segundo ramo, D empilha a configuração C_{i-1} e depois compara com a configuração C_i ;
- Para que isso seja possível, será necessário que as configurações de ordem par sejam escritas na cadeia de entrada de forma revertida;
- $ightharpoonup C_1 \# C_2^R \# C_3 \# C_4^R \# \dots$

Conclusões:

- ightharpoonup D aceita todas as história de computação que não são de aceitação para M com w;
- Se $w \notin L(M)$, então $L(D) = L(G) = \Sigma^*$, ou seja, $G \notin TODAS_{GLC}$
- lacksquare Se $w\in L(M)$, então $L(D)=L(G)
 eq \Sigma^*$, ou seja, $G\in \overline{TODAS_{GLC}}$
- ▶ A existência de D prova a existência de G, e, conseqüentemente, a existência de uma redução de L_u para $\overline{TODAS_{GLC}}$. Logo, $\overline{TODAS_{GLC}}$ e $TODAS_{GLC}$ são indecidíveis.

Origem e natureza

"Post 's Correspondence Problem" (Problema da Correspondência de Post)

- ► Problema que não está relacionado com Máquinas de Turing ou as linguagens por elas aceitas;
- ► Problema combinatorial que envolve a manipulação (emparelhamento) de cadeias de caracteres;
- Demonstra-se ser indecidível;
- ► A indecidibilidade o PCP foi provada por Post em 1946;
- ▶ É usado para demonstrar a indecidibilidade de vários outros problemas.

Definição

Uma "instância" PCP consiste de duas listas A e B de cadeias formadas sobre um mesmo alfabeto Σ . As duas listas devem ter o mesmo comprimento.

- $A = w_1, w_2, ..., w_k;$
- $\triangleright B = x_1, x_2, ..., x_k;$
- Para um certo valor de i, diz-se que o par (w_i, x_i) é um par que está em correspondência;
- ► Pares em correspondência podem ser considerados como peças de um dominó:

$$\left[\frac{w_1}{x_1}\right], \left[\frac{w_2}{x_2}\right], ..., \left[\frac{w_k}{x_k}\right]$$

Solução

Diz-se que uma instância PCP tem uma solução se existir uma seqüência de um ou mais números inteiros (repetições permitidas) $i_1,i_2,...,i_m$, os quais, quando interpretados como índices de cadeias nas listas A e B, produzem como resultado a mesma cadeia.

- $A = w_1, w_2, ..., w_k;$
- $B = x_1, x_2, ..., x_k$
- ▶ Diz-se que $i_1,i_2,...,i_m,m\geq 1$, é uma solução para esta instância PCP se $w_{i_1}w_{i_2}...w_{i_m}=x_{i_1}x_{i_2}...x_{i_m}$

Solução

PCP como um tipo de jogo de dominó:

► Composto por uma quantidade finita de peças:

$$\left[\frac{w_1}{x_1}\right], \left[\frac{w_2}{x_2}\right], ..., \left[\frac{w_k}{x_k}\right]$$

- Peças são combinadas para formar cadeias idênticas na parte de cima e na parte de baixo;
- ▶ Peças podem ser duplicadas para formar cadeias:

$$\left[\frac{w_{i_1}}{x_{i_1}}\right] \left[\frac{w_{i_2}}{x_{i_2}}\right] \dots \left[\frac{w_{i_m}}{x_{i_m}}\right]$$

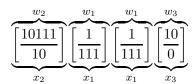
Exemplo

Seja $\Sigma = \{0,1\}$ e suponha que as listas A e B sejam as seguintes:

	Lista ${\cal A}$	Lista ${\cal B}$
i	w_i	x_i
1	1	111
2	10111	10
3	10	0

- ▶ Uma solução para essa instância é a seqüência: $i_1 = 2, i_2 = 1, i_3 = 1, i_4 = 3, \text{ ou simplesmente } 2, 1, 1, 3, \text{ pois } w_2w_1w_1w_3 = \underbrace{10111}_{w_2}\underbrace{1}_{w_1}\underbrace{1}_{w_1}\underbrace{1}_{w_3}\underbrace{1}_{w_3}\underbrace{1}_{w_3} = \underbrace{1011111110}_{1};$
- ▶ Entre outras, 2, 1, 1, 3, 2, 1, 1, 3 também é solução.

ightharpoonup Representação da solução 2, 1, 1, 3 na forma de dominós:



Exemplo

Seja $\Sigma = \{a, b, c\}$ e suponha que as listas A e B sejam as seguintes:

	Lista ${\cal A}$	Lista ${\cal B}$
i	w_i	x_i
1	abc	ab
2	ca	a
3	acc	ba

Essa instância não possui solução, pois $|w_i| > |x_i|, \forall i$.

Exemplo

Seja $\Sigma = \{0,1\}$ e suponha que as listas A e B sejam as seguintes:

	Lista ${\cal A}$	Lista ${\cal B}$
i	w_i	x_i
1	10	101
2	011	11
3	101	011

- Essa instância também não possui solução:
- ▶ Se $i_1 = 2$, então A = 011..., B = 11... e não é possível gerar uma solução;
- ▶ Se $i_1=3$, então A=101..., B=011... e não é possível gerar uma solução;

- ▶ Com $i_1 = 1$, então A = 10..., B = 101... talvez seja possível obter uma solucão;
- ▶ Se $i_2=1$, então A=1010..., B=101101... e não é possível gerar uma solução;
- ▶ Se $i_2=2$, então A=10011..., B=10111... e não é possível gerar uma solução;
- ▶ Com $i_2 = 3$, então A = 10101..., B = 101011... talvez seja possível obter uma solução;
- No entanto, o mesmo raciocínio leva à escolha de $i_3=3$, e assim por diante, e não é possível nunca gerar uma solução.

Problema

Dada uma instância PCP sobre um certo alfabeto Σ , determinar se ela possui uma solução.

- ▶ $PCP = \{\langle P \rangle | P \text{ \'e uma instância PCP com uma solução}\};$
- ► PCP é indecidível.

Estratégia da demonstração

- Reduzir L_u para uma versão modificada do PCP (MPCP);
- Reduzir MPCP para PCP;
- 3 Como L_u é indecidível, MPCP e PCP são também indecidíveis.

Definição

"Modified Post Corresponde Problem" (Problema da Correspondência de Posto Modificado):

- Uma instância MPCP é definida da mesma forma que uma instância PCP;
- ► A solução, no entanto, deve obrigatoriamente iniciar com o par 1;
- $A = w_1, w_2, ..., w_k;$
- $\triangleright B = x_1, x_2, ..., x_k;$
- ▶ Diz-se que $i_1,i_2,...,i_m,m\geq 0$, é uma solução para esta instância MPCP se $w_1w_{i_1}w_{i_2}...w_{i_m}=x_1x_{i_1}x_{i_2}...x_{i_m}$

Exemplo

Seja $\Sigma = \{0,1\}$ e suponha que as listas A e B sejam as seguintes:

	Lista ${\cal A}$	Lista ${\cal B}$
i	w_i	x_i
1	1	111
2	10111	10
3	10	0

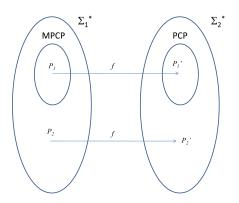
- ► Considerada como instância PCP, há solução;
- ► Considerada como instância MPCP, não há solução.

Exemplo

Continuação

- $A = w_1... = 1..., B = x_1... = 111...$
- Se $i_1=2$, então A=110111..., B=11110... e não há solução possível;
- ▶ Se $i_1 = 3$, então A = 110..., B = 1110... e não há solução possível;
- ▶ Se $i_1=1$, então A=11..., B=111111... e não há solução possível, pois as cadeias nunca terão o mesmo tamanho.

 P_1 é uma instância MPCP com solução $\Leftrightarrow P_1'$ é uma instância PCP com solução.



A obtenção de $P_1'(P_2')$ (PCP) a partir de $P_1(P_2)$ (MPCP) pode ser feita da seguinte forma:

- ▶ MPCP=(A, B) sobre Σ ;
- ▶ Suponha $A = w_1, w_2, ..., w_k$;
- ▶ Suponha $B = x_1, x_2, ..., x_k$;
- ▶ Suponha que $* \notin \Sigma$, $\$ \notin \Sigma$;
- ▶ PCP=(C,D) sobre $\Sigma \cup \{*,\$\};$
- $C = y_0, y_1, y_2, ..., y_k, y_{k+1},$
- $D = z_0, z_1, z_2, ..., z_k, z_{k+1};$

- $orall \ \forall i,1\leq i\leq k,\ y_i$ é obtido a partir de w_i pela inserção do símbolo * após cada símbolo de w_i
- lacktriangledown $\forall i,1\leq i\leq k$, z_i é obtido a partir de x_i pela inserção do símbolo * antes cada símbolo de x_i
- $y_0 = *y_1$
- $ightharpoonup z_0 = z_1$
- $y_{k+1} =$ \$
- $z_{k+1} = *$

Exemplo

Suponha a instância MPCP:

	Lista ${\cal A}$	Lista ${\cal B}$
i	w_i	x_i
1	1	111
2	10111	10
3	10	0

A aplicação da construção anterior resulta na instância PCP:

	Lista ${\cal C}$	Lista ${\cal D}$
i	y_i	z_i
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
3	1*0*	*0
4	\$	*\$

Para provar que a construção proposta é uma redução, é necessário (suponha que P_1 reduz para P'_1):

- Provar que se P_1 é uma instância MPCP com solução, então P_1' é uma instância PCP com solução;
- ② Provar que se P_1' é uma instância PCP com solução, então P_1 é uma instância MPCP com solução.

Se P_1 é uma instância MPCP com solução, então P_1' é uma instância PCP com solução:

- Suponha que a solução de P_1 seja $i_1, i_2, ..., i_m$;
- ▶ Portanto, $w_1w_{i_1}w_{i_2}...w_{i_m} = x_1x_{i_1}x_{i_2}...x_{i_m}$;
- ightharpoonup Considerar $y_1y_{i_1}y_{i_2}...y_{i_m}$ e $z_1z_{i_1}z_{i_2}...z_{i_m}$;
- ► As duas cadeias são idênticas, exceto pelo primeiro símbolo da primeira cadeia e pelo último símbolo da segunda cadeia;
- Ou seja, $*y_1y_{i_1}y_{i_2}...y_{i_m} = z_1z_{i_1}z_{i_2}...z_{i_m}*$;
- Mas esse resultado pode ser obtido substituindo-se o primeiro par (de 1 por 0) e acrescentando-se um novo par no final (k+1);
- ightharpoonup Ou seja, $y_0y_{i_1}y_{i_2}...y_{i_m}y_{k+1}=z_0z_{i_1}z_{i_2}...z_{i_m}z_{k+1}$;
- ▶ Logo, $0, i_1, i_2, ..., i_m, k+1$ é uma solução de P'_1 .

Se P_1' é uma instância PCP com solução, então P_1 é uma instância MPCP com solução:

- A solução de P_1' deve começar com o par 0 e terminar com o par k+1, pois apenas o par 0 inicia com o mesmo símbolo (*) e apenas o par k+1 termina com o mesmo símbolo (\$);
- ▶ Portanto, a solução de P'_1 é $0, i_1, i_2, ..., i_m, k+1$;
- ► Logo, $y_0y_{i_1}y_{i_2}...y_{i_m}y_{k+1} = z_0z_{i_1}z_{i_2}...z_{i_m}z_{k+1}$;
- ➤ Se forem removidos todos os símbolos * e \$ de ambas as cadeias, resulta:
- $w_1 w_{i_1} w_{i_2} ... w_{i_m} = x_1 x_{i_1} x_{i_2} ... x_{i_m} ;$
- ightharpoonup Ou seja, $1, i_1, i_2, ..., i_m$ é solução para P_1 .

Conclusões até o momento:

- ► Se PCP for decidível, então MPCP também será decidível;
- ▶ Se MPCP for indecidível, então PCP também será indecidível.

Exemplo

Suponha a instância MPCP:

	Lista ${\cal A}$	Lista ${\cal B}$
i	w_i	x_i
1	ab	abb
2	bab	ba
3	ba	a
4	a	ba

A aplicação da construção anterior resulta na instância PCP:

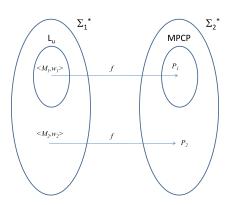
	Lista ${\cal C}$	Lista ${\cal D}$
i	y_i	z_i
0	*a*b*	*a*b*b
1	a*b*	*a*b*b
2	b*a*b*	*b*a
3	b*a*	*a
4	a*	*b*a
5	\$	*\$

- ▶ Uma solução para a instância MPCP é 3, 2, 4;
- $y_1y_3y_2y_4 = \underbrace{a * b * b * a * b * a * b * a * b *}_{y_1}\underbrace{a * b * a * b *}_{y_2}\underbrace{a *}_{y_4}$
- ► Substituir o par 1 pelo par 0 no início e acrescentar o par 5 no final;
- $y_0y_3y_2y_4y_5 = \underbrace{*a * b * b * a * b * a * b * a * b *}_{y_0}\underbrace{b * a * b *}_{y_2}\underbrace{a *}_{y_4}\underbrace{\$}_{y_5}$
- $z_0 z_3 z_2 z_4 z_5 = \underbrace{*a * b * b}_{z_0} \underbrace{*a}_{z_3} \underbrace{*b * a}_{z_2} \underbrace{*b * a}_{z_4} \underbrace{*\$}_{z_5}$
- ightharpoonup Portanto, 0,3,2,4,5 é uma solução para o PCP correspondente.

- ▶ Uma solução para a instância PCP é 0, 3, 5;
- $y_0 y_3 y_5 = \underbrace{*a * b *}_{y_0} \underbrace{b * a *}_{y_3} \underbrace{\$}_{y_5} = z_0 z_3 z_5 = \underbrace{*a * b * b}_{z_0} \underbrace{*a *}_{z_3} \underbrace{*\$}_{z_5}$
- ► Remover todos os símbolos * e \$ de ambas as cadeias;
- ▶ O resultado é $w_1w_3 = \underbrace{ab}_{w_1}\underbrace{ba}_{w_3} = x_1x_3 = \underbrace{abb}_{x_1}\underbrace{a}_{x_3}$
- ▶ Logo, 1,3 é uma solução para o MPCP correspondente.

Redução de L_u para MPCP

 $\langle M_1, w_1 \rangle \in L_u \Leftrightarrow P_1$ é uma instância MPCP com solução.



Redução de L_u para MPCP

A obtenção de P a partir de $\langle M,w \rangle$ pode ser feita da seguinte forma:

- ightharpoonup As listas A e B representam a história de computação de M com w;
- Soluções parciais para P representam histórias de computação incompletas para w em M;
- ▶ Se $w \in L(M)$, ou seja, se $\langle M, w \rangle \in L_u$, então é possível gerar uma solução para P;
- ▶ Se $w \notin L(M)$, ou seja, se $\langle M, w \rangle \notin L_u$, então não há solução possível para P;
- ightharpoonup A construção da lista A está sempre uma configuração "atrasada" em relação à construção da lista B;
- ightharpoonup As listas coincidem se e apenas se M entra num estado final.

Premissa

Seja $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ e suponha que:

- M não grava brancos na fita;
- M não se desloca para à esquerda da posição inicial da fita.

Nesse caso, é possível afirmar que:

- ▶ As configurações de M tem o formato geral $\alpha q\beta$, com $q\in Q, \alpha\in \Gamma^*$ e $\beta\in \Gamma^*$, ou seja, α e β são compostos apenas por símbolos diferentes de B;
- As cadeias α e β representam as posições da fita inicialmente ocupadas pela cadeia de entrada w, além de eventuais posições visitadas à direita da mesma.

Passo 1:

▶ O primeiro par da instância MPCP é:

	Lista A	Lista ${\cal B}$
1	#	$\#q_0w\#$

- ► Ele será usado para iniciar a solução, caso exista;
- Notar que a lista B está uma configuração adiantada em relação à lista A.

Passo 2:

- Novos pares são criados a partir de δ , com o objetivo de reproduzir a história de computação de w em M;
- $ightharpoonup \forall q_i \in Q F, q_j \in Q, x, y, z \in \Gamma$, acrescentar os pares:

10 - 0) 1jv	· · · · · · · · · · · · · · · · · · ·
Lista A	Lista ${\cal B}$	
$q_i x$	yq_j	se $\delta(q_i,x)=(q_j,y,R)$
zq_ix	$q_j z y$	se $\delta(q_i,x)=(q_j,y,L)$
$q_i \#$	$yq_j\#$	se $\delta(q_i,B)=(q_j,y,R)$
$zq_i\#$	$q_j z y \#$	se $\delta(q_i,B)=(q_j,y,L)$

- Para cada transição possível de ser aplicada numa certa configuração de M, há um par correspondente em P;
- ightharpoonup A lista B está uma configuração adiantada em relação à lista A.

Passo 3:

 $\blacktriangleright \ \forall x \in \Gamma$, acrescentar os pares:

Lista ${\cal A}$	Lista ${\cal B}$
\overline{x}	x
#	#

- Permitem a cópia de símbolos que não envolvam o estado corrente;
- Serão usados para permitir o avanço da solução até chegar numa nova configuração.

Passo 4:

- ➤ Se um estado final foi alcançado, deve-se permitir que as cadeias se tornem idênticas;
- $\forall q_f \in F, x \in \Gamma, y \in \Gamma, \text{ acrescentar os pares:}$

Lista A	Lista B
xq_fy	q_f
xq_f	q_f
$q_f y$	q_f

- ► São geradas novas cadeias que não representam configurações;
- ▶ O uso recorrente desses pares permite o "consumo" dos símbolos que se encontram à esquerda e à direita do estado q_f na última confguração.

Passo 5:

- ▶ Todos os símbolos, a menos de q_f , foram removidos da última configuração;
- $w_1...w_k = \#\mu\#$
- $x_1...x_k = \#\mu\#q_f\#$
- ▶ Para torná-las iguais, basta acrescentar o par:

Lista
$$A$$
 Lista B $q_f \# \#$ $\#$

- $w_1...w_k = \#\mu\#q_f\#\#$
- $x_1...x_k = \#\mu\#q_f\#\#$
- P tem uma solução.

Exemplo

Construção de P a partir de

$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_3\}) \text{ e } w = 01, \text{ com } \delta$$
:

	$\delta(q_i, 0)$		
q_1	$(q_2, 1, R)$	$(q_2,0,L)$	$(q_2, 1, L)$
q_2	$(q_2, 1, R)$ $(q_3, 0, L)$	$(q_1,0,R)$	$(q_2,0,R)$
q_3	-		_

A história de computação de w em M é:

$$q_101 \vdash 1q_21 \vdash 10q_1 \vdash 1q_201 \vdash q_3101$$

Passo	Lista A	Lista B	Origem
(1)	#	$\#q_101$	
(2)	$q_{1}0$	$1q_2$	$\delta(q_1,0) = (q_2,1,R)$
	$0q_{1}1$	q_200	$\delta(q_1, 1) = (q_2, 0, L)$
	$1q_{1}1$	$q_2 10$	$\delta(q_1, 1) = (q_2, 0, L)$
	$0q_1#$	$q_201\#$	$\delta(q_1, B) = (q_2, 1, L)$
	$1q_1\#$	$q_211\#$	$\delta(q_1, B) = (q_2, 1, L)$
	$0q_{2}0$	$q_300\#$	$\delta(q_2,0) = (q_3,0,L)$
	$1q_{2}0$	$q_310\#$	$\delta(q_2,0) = (q_3,0,L)$
	q_21	$0q_1$	$\delta(q_2, 1) = (q_1, 0, R)$
	$q_2 \#$	$0q_2\#$	$\delta(q_2, B) = (q_2, 0, R)$
(3)	0	0	
	1	1	
	#	#	

Passo	Lista A	Lista ${\cal B}$	Origem
(4)	$0q_{3}0$	q_3	
	$0q_30 \\ 0q_31$	q_3	
	$1q_{3}0$	q_3	
	$1q_{3}1$	q_3	
	$0q_3$	q_3	
	$1q_3$	q_3	
	$q_{3}0$	q_3	
	q_31	q_3	
(5)	$q_3##$	#	

Exemplo

Continuação

➤ A solução para essa instância MPCP começa com o primeiro par (passo 1):

A : #

 $B : \#q_101\#$

- Para continuar, é necessário que o próximo par da lista A seja prefixo da cadeia $q_101\#$;
- ▶ O par $(q_10, 1q_2)$ é selecionado (passo 2):

 $A : \#q_10$

 $B : \#q_101\#1q_2$

Exemplo

Continuação

- Para continuar, é necessário copiar o restante da configuração até alcançar o estado q_2 ;
- ▶ Os pares (1,1), (#,#) e (1,1) são selecionados (passo 3):

 $A : \#q_101$

 $B : \#q_101\#1q_21$

 $A : \#q_101\#$

 $B : \#q_101\#1q_21\#$

 $A : \#q_101\#1$

 $B : \#q_101\#1q_21\#1$

- Para continuar, é necessário que o próximo par da lista A seja prefixo da cadeia $q_21\#1$;
- ▶ O par $(q_21, 0q_1)$ é selecionado (passo 2):

 $A : \#q_101\#1q_21$

 $B : \#q_101\#1q_21\#10q_1$

- ► Em seguida, pode-se copiar 2 (#1) ou 3 (#10) símbolos antes de aplicar uma nova transição;
- No entanto, a inserção de 3 símbolos impede o desenvolvimento das cadeias, pois não existem pares na lista A que sejam prefixo de $q_1\#10$:

 $A: \#q_101\#1q_21\#10$

 $B : \#q_101\#1q_21\#10q_1\#10$

- lsso acontece porque a próxima movimentação de M é para a esquerda e, portanto, o símbolo à esquerda de q_1 é necessário para fazer a escolha do par correto nesse caso;
- ▶ Deve-se copiar apenas 2 símbolos (# e 1), resultando em:

 $A: \#q_101\#1q_21\#1$

 $B : \#q_101\#1q_21\#10q_1\#1$

- Para continuar, é necessário que o próximo par da lista A seja prefixo da cadeia $0q_1\#1$;
- ▶ O par $(0q_1\#, q_201\#)$ é selecionado (passo 2):

 $A: \#q_101\#1q_21\#10q_1\#$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#$

- ▶ Para continuar, pode-se selecionar o par (1,1) (passo 3) ou então selecionar o par $(1q_20, q_310)$ (passo 2);
- ➤ Como a primeira escolha impede o desenvolvimento futuro das cadeias, deve-se optar pela segunda alternativa e o resultado é:

 $A: \#q_101\#1q_21\#10q_1\#1q_20$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_310$

- lacktriangle Esse ponto corresponde à entrada de M num estado de aceitação (q_3) ;
- Portanto, são iniciados os procedimentos para tornar as cadeias idênticas;
- ▶ Antes, porém, são selecionados os pares (1,1) e (#,#):

 $A: \#q_101\#1q_21\#10q_1\#1q_201$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_3101$

 $A : \#q_101\#1q_21\#10q_1\#1q_201\#$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#$

▶ Para continuar, é selecionado o par (q_31, q_3) (passo 4):

 $A: \#q_101\#1q_21\#10q_1\#1q_201\#q_31$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_3$

▶ Copiando os símbolos 0, 1 e # (passo 3):

 $A: \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#$

▶ Para continuar, é selecionado o par (q_30, q_3) (passo 4):

 $A: \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_30$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_3$

► Copiando os símbolos 1 e # (passo 3):

 $A: \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31\#1q_3$

▶ Para continuar, é selecionado novamente o par (q_31, q_3) (passo 4):

 $A: \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31\#q_3$

► Copiando o símbolo # (passo 3):

 $A: \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31\#$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31\#q_3\#$

▶ Para terminar, é selecionado o par $(q_3##, #)$ (passo 5):

 $A: \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31\#q_3\#\#$

 $B : \#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31\#q_3\#\#$

► As cadeias são idênticas e P tem solução.

Para provar que a construção proposta é uma redução, é necessário (considerar P obtido a partir de M,w conforme visto anteriormente):

- ① Provar que se $\langle M,w \rangle \in L_u$, então P é uma instância MPCP com solução;
- ② Provar que se P é uma instância MPCP com solução, então $\langle M,w \rangle \in L_u.$

Se $\langle M, w \rangle \in L_u$, então P é uma instância MPCP com solução:

- ► Iniciar a simulação com o par 1;
- Usar os pares do passo 2 para representar mudanças movimentações de M e pares do passo 3 para copiar símbolos da fita e # conforme necessário;
- ightharpoonup Se M entrar num estado de aceitação, usar os pares do passo 4 e depois o par do passo 5 para permitir que as cadeias fiquem idênticas;
- ▶ Logo, se $\langle M, w \rangle \in L_u$, então P tem solução.

Se P é uma instância MPCP com solução, então $\langle M, w \rangle \in L_u$:

Por se tratar de MPCP, a solução parcial começa com:

A : #

B : $\#q_0w\#$

▶ Enquanto M não entra em um estado de aceitação, apenas os pares dos passos 2 e 3 pode ser usados, e as cadeias possuem o formato geral (observar que |xy| > |x|):

A : x B : xy

- ► Se existir uma solução, então isso significa que, em algum momento, os pares do passo 4 terão sido usados;
- ▶ Logo, se P tem solução, então M entra em um estado de aceitação, ou seja, M aceita w e $\langle M, w \rangle \in L_u$.

Determinar se uma gramática livre de contexto G qualquer é ambígua:

$$AMB_{GLC} = \{\langle G \rangle | G \text{ \'e uma GLC amb\'igua} \}$$

<u>Teorema</u>: AMB_{GLC} é indecidível.

Prova:

Por redução a partir de PCP.

Construção de uma GLC G a partir de uma instância PCP P, tal que P tem solução $\Leftrightarrow G$ é ambígua:

- ▶ Seja P = (A, B) sobre Σ ;
- $A = w_1, w_2, ..., w_k;$
- $\triangleright B = x_1, x_2, ..., x_k;$
- ▶ Seja G_A uma GLC que gera uma linguagem L_A sobre $\Sigma' = \Sigma \cup \{a_1, a_2, ..., a_k\}$:

$$A \rightarrow w_1 A a_1 | w_2 A a_2 | \dots | w_k A a_k |$$

$$A \rightarrow w_1 a_1 | w_2 a_2 | \dots | w_k a_k$$

 $ightharpoonup a_i$ representa o índice i usado para selecionar o par correspondente.

A linguagem L_A :

▶ Suas sentenças tem a forma geral:

$$w_{i_1}w_{i_2}...w_{i_m}a_{i_m}...a_{i_2}a_{i_1}$$

com
$$m \ge 1$$
 e $1 \le i_1, i_2, ..., i_m \le k$.

 $ightharpoonup L_A$ é não-ambígua (todas as suas sentenças possuem uma única seqüência de derivações mais à esquerda).

Seja G_B uma GLC que gera uma linguagem L_B sobre

$$\Sigma' = \Sigma \cup \{a_1, a_2, ..., a_k\}$$
:

- $A = w_1, w_2, ..., w_k;$
- $B = x_1, x_2, ..., x_k;$
- ► *G_B*:

$$B \rightarrow x_1 B a_1 | x_2 B a_2 | \dots | x_k B a_k |$$

$$B \rightarrow x_1 a_1 | x_2 a_2 | \dots | x_k a_k$$

- \triangleright a_i representa o índice i usado para selecionar o par correspondente;
- $ightharpoonup L_B$ é não-ambígua.

Construção de uma GLC G_{AB} a partir de G_A e G_B , que por sua vez foram construídas a partir de P:

- ▶ Seja $G_A = (\{A\} \cup \Sigma', \Sigma', P_A, A);$
- ▶ Seja $G_B = (\{B\} \cup \Sigma', \Sigma', P_B, B);$
- ightharpoonup Construir $G_{AB} =$

$$(\{S,A,B\} \cup \Sigma', \Sigma', P_A \cup P_B \cup \{S \to A, S \to B\}, S)$$

Para provar que a construção proposta é uma redução, basta provar que:

- lacktriangle Se a instância PCP P tem solução, então G é ambígua;
- $oldsymbol{Q}$ Se G é ambígua, então a instância PCP P tem solução.

Se G é ambígua, então P tem solução:

- 1. Considere $G = G_{AB}$;
- 2. Se G é ambígua, então existe pelo menos uma cadeia α com duas ou mais derivações mais à esquerda em L(G);
- 3. Como, por construção, G_A e G_B são não-ambíguas, então as duas derivações para α devem ser:

$$S \Rightarrow A \Rightarrow \dots \Rightarrow \alpha$$

 $S \Rightarrow B \Rightarrow \dots \Rightarrow \alpha$

- 4. No entanto, $\alpha=w_{i_1}w_{i_2}...w_{i_m}a_{i_m}...a_{i_2}a_{i_1}=x_{i_1}x_{i_2}...x_{i_m}a_{i_m}...a_{i_2}a_{i_1}$
- 5. Portanto, $w_{i_1}w_{i_2}...w_{i_m} = x_{i_1}x_{i_2}...x_{i_m}$
- 6. Logo, P tem uma solução $(i_1i_2...i_m)$.

Se P tem solução, então G é ambígua:

- 1. Considere $G = G_{AB}$;
- 2. Suponha que $i_1, i_2, ..., i_m$ seja uma solução para P;
- 3. Considere as seguintes derivações em G:

$$S \Rightarrow A \Rightarrow w_{i_1} A a_{i_1} \Rightarrow w_{i_1} w_{i_2} A a_{i_2} a_{i_1} \Rightarrow \dots$$

$$\Rightarrow w_{i_1} w_{i_2} \dots w_{i_{m-1}} A a_{i_{m-1}} \dots a_{i_2} a_{i_1}$$

$$\Rightarrow w_{i_1} w_{i_2} \dots w_{i_{m-1}} w_{i_m} a_{i_m} a_{i_{m-1}} \dots a_{i_2} a_{i_1}$$

$$S \Rightarrow B \Rightarrow x_{i_1} A a_{i_1} \Rightarrow x_{i_1} x_{i_2} A a_{i_2} a_{i_1} \Rightarrow \dots$$

$$\Rightarrow x_{i_1} x_{i_2} \dots x_{i_{m-1}} A a_{i_{m-1}} \dots a_{i_2} a_{i_1}$$

$$\Rightarrow x_{i_1} x_{i_2} \dots x_{i_{m-1}} x_{i_m} a_{i_m} a_{i_{m-1}} \dots a_{i_2} a_{i_1}$$

- 4. Como $i_1,i_2,...,i_m$ é uma solução, então $w_{i_1}w_{i_2}...w_{i_m}=x_{i_1}x_{i_2}...x_{i_m}$
- 5. Como as cadeias são idênticas, e como elas foram geradas de formas distintas, usando apenas derivações mais à esquerda, então G é ambígua.

Como PCP reduz para G_{AMB} e PCP é indecidível, então G_{AMB} é também indecidível.

Exemplo

▶ Seja P a seguinte instância PCP sobre $\{a, b\}$:

	Lista A	Lista ${\cal B}$
	w_i	x_i
1	aaa	aa
2	baa	abaaa

ightharpoonup Considerar $\Sigma'=\{a,b,a_1,a_2\}$ e G_A :

$$A \rightarrow aaaAa_1|baaAa_2|aaaa_1|baaa_2$$

ightharpoonup Considerar $\Sigma'=\{a,b,a_1,a_2\}$ e G_B :

 $B \rightarrow aaBa_1|abaaaBa_2|aaa_1|abaaaa_2$

▶ Considerar $\Sigma' = \{a, b, a_1, a_2\}$ e G_{AB} :

$$S \rightarrow A|B$$

$$A \rightarrow aaaAa_1|baaAa_2|aaaa_1|baaa_2$$

$$B \rightarrow aaBa_1|abaaaBa_2|aaa_1|abaaaa_2$$

Exemplo Continuação

P tem solução $\Rightarrow G_{AB}$ é ambígua:

- ► A seqüência 121 é uma solução para P;
- ▶ Considerar $w_1w_2w_1a_1a_2a_1 \in L_A$ e $x_1x_2x_1a_1a_2a_1 \in L_B$;
- ▶ Como 121 é solução, então $w_1w_2w_1=x_1x_2x_1$ e, portanto, $w_1w_2w_1a_1a_2a_1=x_1x_2x_1a_1a_2a_1=aaabaaaaaa_1a_2a_1$;
- No entanto, existem duas derivações mais à esquerda distintas para essa cadeia em G_{AB} :

$$S \Rightarrow A \Rightarrow aaaAa_1 \Rightarrow aaabaaAa_2a_1 \Rightarrow aaabaaaaaa_1a_2a_1$$

 $S \Rightarrow B \Rightarrow aaAa_1 \Rightarrow aaabaaaAa_2a_1 \Rightarrow aaabaaaaaa_1a_2a_1$

ightharpoonup Portanto, G_{AB} é ambígua.

Exemplo Continuação

G_{AB} é ambígua $\Rightarrow P$ tem solução:

- ightharpoonup Seja cadeia $aaabaaaaaa_1a_2a_1 \in L_{AB}$;
- Essa cadeia tem duas derivações mais à esquerda distintas:

$$S \Rightarrow A \Rightarrow aaaAa_1 \Rightarrow aaabaaAa_2a_1 \Rightarrow aaabaaaaaa_1a_2a_1$$

 $S \Rightarrow B \Rightarrow aaAa_1 \Rightarrow aaabaaaAa_2a_1 \Rightarrow aaabaaaaaa_1a_2a_1$

- ightharpoonup Da primeira derivação, pode-se concluir que $aaabaaaaa=w_1w_2w_1$;
- ightharpoonup Da segunda derivação, pode-se concluir que $aaabaaaaa=x_1x_2x_1$;
- ▶ Portanto, P tem uma solução (121).

Complemento de uma linguagem de lista

- $ightharpoonup L_A$ e L_B são linguagens livres de contexto;
- ▶ Deseja-se provar que $\overline{L_A}$ e $\overline{L_A}$ são também livres de contexto;
- ► Esses resultados permitirão a demonstração de que outros problemas acerca das linguagens livres de contexto são também indecidíveis.

$\overline{L_A}$ é LLC

<u>Teorema</u>: Seja L_A uma linguagem para a lista A de uma instância PCP P sobre $\Sigma \cup \{a_1, a_2, ..., a_k\}$. Então $\overline{L_A}$ é também livre de contexto.

Prova:

Será apresentado um autômato de pilha determinístico M, com critério de aceitação estado final, que reconhece $\overline{L_A}$.

$\overline{L_A}$ é LLC

- 1. Enquanto M encontrar apenas símbolos de Σ na entrada, ele os insere na pilha. Se a cadeia de entrada esgotar, M aceita pois todas as cadeias de $\Sigma^* \in \overline{L_A}$;
- 2. Verificar se o próximo símbolo da cadeia de entrada é a_i ; se não é, aceitar;
- 3. Desempilhar $|w_i|$ símbolos do topo da pilha; se não houverem $|w_i|$ símbolos na pilha, aceitar; se houverem, verificar se eles correspondem à w_i^R :
 - (a) Em caso negativo, então a cadeia de entrada certamente não pertence à L_A . Nesso caso, M deve esgotar a leitura dos símbolos da cadeia de entrada e ir para um estado de aceitação;
 - (b) Em caso afirmativo, e se a pilha ainda não está vazia, ir para 2;
 - (c) Em caso afirmativo, e se a pilha está vazia, a cadeia analisada até o momento pertence à L_A . A aceitação ou rejeição de M estará condicionada à presença de novos símbolos no final da cadeia.
- 4. Se houverem outros símbolos de Σ na cadeia entrada, aceitar. Caso contrário, rejeitar.

Seja $\Sigma = \{0,1\}$ e suponha que as listas A e B sejam as seguintes:

	Lista ${\cal A}$	Lista ${\cal B}$
i	w_i	x_i
1	1	111
2	10111	10
3	10	0

 $A \to 1Aa_1|101111Aa_2|10Aa_3|1a_1|101111a_2|10a_3$

- A cadeia $\underbrace{10111}_{w_2}\underbrace{10}_{w_3}a_3a_2\notin \overline{L_A}$, pois M:
 - Empilha 1011110;
 - **Q** Quando encontra a_3 , desempilha $|w_3|=2$ símbolos, $\sigma_1\sigma_2$;
 - 3 Verifica que $\sigma_1 \sigma_2 = 01 = w_3^R$;
 - Quando encontra a_2 , desempilha $|w_2| = 5$ símbolos, $\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5$;
 - Solution Verifica que $\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 = 11101 = w_2^R$;
 - lacktriangle Como não há outros símbolos na cadeia de entrada, a cadeia pertence à L_A e portanto M a rejeita.

- A cadeia $\underbrace{10111}_{w_2}\underbrace{10}_{w_3}a_2a_3\in\overline{L_A}$, pois:
 - Empilha 1011110;
 - **Q** Quando encontra a_2 , desempilha $|w_2| = 5$ símbolos, $\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5$;
 - lacksquare Verifica que $\sigma_1\sigma_2\sigma_3\sigma_4\sigma_5=01111\neq w_2^R$ e aceita a entrada.
- A cadeia $a_3a_2\underbrace{10111}_{202}\underbrace{10}_{202}\in\overline{L_A}$, pois:
 - lacktriangle Não existem símbolos na pilha para verificar depois de encontrado a_3 .

- lacksquare A cadeia $\underbrace{10111}_{w_2}\underbrace{10}_{w_3}a_3a_2a_1\in \overline{L_A}$:
 - Empilha 1011110;
 - **Q** Quando encontra a_3 , desempilha $|w_3|=2$ símbolos, $\sigma_1\sigma_2$;
 - \bullet Verifica que $\sigma_1 \sigma_2 = 01 = w_3^R$;
 - **Q** Quando encontra a_2 , desempilha $|w_2|=5$ símbolos, $\sigma_1\sigma_2\sigma_3\sigma_4\sigma_5$;
 - **5** Verifica que $\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 = 11101 = w_2^R$;
 - **1** Quando encontra a_1 , M aceita a entrada.
- A cadeia $\underbrace{10111}_{w_2}\underbrace{10}_{w_3}\in \overline{L_A}$:
 - Empilha 1011110;
 - 2 Como não encontra nenhum a_i , a entrada é aceita.

- lacksquare A cadeia $\underbrace{11111}_{?}a_2\in\overline{L_A}$:
 - Empilha 11111;
 - **Q** Quando encontra a_2 , desempilha $|w_2| = 5$ símbolos, $\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5$;
 - lacksquare Verifica que $\sigma_1\sigma_2\sigma_3\sigma_4\sigma_5=11111\neq w_2^R$ e aceita a entrada.
- lacksquare A cadeia $\underbrace{1111}_{?}\underbrace{1}_{w_1}a_1a_2\in\overline{L_A}$:
 - Empilha 11111;
 - **Q** Quando encontra a_1 , desempilha $|w_1|=1$ símbolos, σ_1 ;
 - \bullet Verifica que $\sigma_1 = 1 = w_1^R$;
 - Quando encontra a_2 , tenta desempilhar $|w_2| = 5$ símbolos, mas existem apenas 4 deles na pilha;
 - M aceita a entrada.

Problemas

Sejam G_1, G_2 gramáticas livres de contexto quaisquer e R uma expressão regular qualquer. Os seguintes problemas são indecidíveis:

- $L(G_1) \cap L(G_2) = \emptyset?$
- $L(G_1) = L(G_2)$?
- $L(G_1) = L(R)$?
- $L(G_1) = T^*$ para algum alfabeto T?
- **5** $L(G_1) \subseteq L(G_2)$?
- \bullet $L(R) \subseteq L(G_1)$?

Problemas

Serão feitas reduções de PCP para cada um desses problemas:

- ightharpoonup Seja Σ o alfabeto da instância PCP P considerada;
- ▶ Seja $I = \{a_1, a_2, ..., a_k\};$
- $lackbox{L}_A, L_B, \overline{L_A}$ e $\overline{L_B}$ são linguagens livres de contexto construídas sobre P;

$$L(G_1) \cap L(G_2) = \emptyset$$
?

$$INT_{GLC} = \{\langle G_1, G_2 \rangle | G_1 \text{ e } G_2 \text{ são GLCs e } L(G_1) \cap L(G_2) = \emptyset \}$$

- ightharpoonup Seja $L(G_1)=L_A$;
- ightharpoonup Seja $L(G_2)=L_B$;
- ▶ O conjunto $L(G_1) \cap L(G_2)$ contém todas as cadeias que <u>são</u> solução de P;
- ▶ Logo, P tem solução $\Leftrightarrow L(G_1) \cap L(G_2) \neq \emptyset$;
- ightharpoonup Temos uma redução de P para $\overline{INT_{GLC}}$;
- lacktriangle Portanto, $\overline{INT_{GLC}}$ e também INT_{GLC} são indecidíveis.

$L(G_1) = L(G_2)?$

$$EQ_{GLC} = \{\langle G_1, G_2 \rangle | G_1 \text{ e } G_2 \text{ são GLCs e } L(G_1) = L(G_2)\}$$

- ▶ Seja G_1 tal que $L(G_1) = \overline{L_A} \cup \overline{L_B}$ (LLCs são fechadas em relação à união);
- ▶ Seja G_2 tal que $L(G_2) = (\Sigma \cup I)^*$ (a linguagem é regular);
- Notar que $L(G_1) = \overline{L_A} \cup \overline{L_B} = \overline{L_A \cap L_B}$;
- lacksquare Portanto, $L(G_1)$ contém todas as cadeias que <u>não</u> são solução de P;
- $lackbox L(G_2)$ contém todas as cadeias sobre o alfabeto $\Sigma \cup I$;
- ▶ Logo, P tem solução $\Leftrightarrow L(G_1) \neq L(G_2)$;
- lacktriangle Temos uma redução de P para $\overline{EQ_{GLC}}$;
- lacktriangle Portanto, $\overline{EQ_{GLC}}$ e também EQ_{GLC} são indecidíveis.

$$L(G_1) = L(R)?$$

$$EQ_{GLC/R} = \{\langle G_1,R\rangle | G_1 \text{ \'e uma GLC},$$
 R \'e uma expressão regular e $L(G_1) = L(R)\}$

- Idêntico ao caso anterior;
- ightharpoonup Basta substituir G_2 por R.

$L(G_1) = T^*?$

$$TOT_{GLC} = \{\langle G_1 \rangle | G_1 \text{ \'e uma GLC e } L(G_1) = T^* \text{para algum alfabeto } T\}$$

- ▶ Seja G_1 tal que $L(G_1) = \overline{L_A} \cup \overline{L_B}$ (LLCs são fechadas em relação à união);
- Notar que $L(G_1) = \overline{L_A} \cup \overline{L_B} = \overline{L_A \cap L_B}$;
- ▶ Portanto, $L(G_1)$ contém todas as cadeias que <u>não</u> são solução de P;
- ▶ Logo, P tem solução $\Leftrightarrow L(G_1) \neq T^*$;
- lacktriangle Temos uma redução de P para $\overline{TOT_{GLC}}$;
- Notar que $T=\Sigma\cup\{a_1,a_2,...,a_k\}$ é o único alfabeto sobre o qual $\overline{L_A}\cup\overline{L_B}$ pode corresponder a um fechamento;
- lacktriangle Portanto, $\overline{TOT_{GLC}}$ e também TOT_{GLC} são indecidíveis.

$L(G_1) \subseteq L(G_2)$?

$$SUB_{GLC} = \{\langle G_1, G_2 \rangle | G_1 \text{ e } G_2 \text{ são GLCs e } L(G_1) \subseteq L(G_2) \}$$

- ▶ Seja G_1 tal que $L(G_1) = (\Sigma \cup I)^*$;
- Seja G_2 tal que $L(G_2) = \overline{L_A} \cup \overline{L_B}$;
- ▶ Então, $L(G_1) \subseteq L(G_2) \Leftrightarrow \overline{L_A} \cup \overline{L_B} = (\Sigma \cup I)^*$;
- ▶ Logo, P tem solução $\Leftrightarrow L(G_1) \not\subseteq L(G_2)$;
- lacktriangle Temos uma redução de P para SUB_{GLC} ;
- lacktriangle Portanto, $\overline{SUB_{GLC}}$ e também SUB_{GLC} são indecidíveis.

$$L(R) \subseteq L(G_1)$$
?

$$SUB_{R/GLC}=\{\langle R,G_1
angle|R$$
 é uma expressão regular, G_1 é uma GLC e $L(R)\subseteq L(G_1)\}$

- ► Idêntico ao caso anterior;
- ▶ Substituir G_1 por R;
- ightharpoonup Substituir G_2 por G_1 .