Formalization of Context-Free Language Theory

Marcus Vinicius Midena Ramos
(PhD student - UFPE, Recife, Brazil)

Ruy J. G. B. de Queiroz (Advisor - UFPE, Recife, Brazil)
Nelma Moreira (Supervisor - UP, Porto, Portugal)
José Carlos Bacelar Almeida (Supervisor - UM, Braga, Portugal)

Universidade do Porto
Departamento de Ciéncia de Computadores, Faculdade de Ciéncias
Porto, Portugal

July 10th, 2015

mvmr@cin.ufpe.br
(12 de setembro de 2015, 10:50)

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 1/ 144

Introduction

Profile

» Electronics Engineering at Universidade de Sdo Paulo in 1982;
» M.Sc. in Digital Systems at Universidade de Sdo Paulo in 1991;

» Teaching experience with programming languages, compilers, formal
languages, automata theory and computation theory since 1991;

» Professional experience from 1983 to 1999 (software development,
product management, marketing, retail, franchising, human resources,
IT management);

» Current position at UNIVASF (Universidade Federal do Vale do Sao
Francisco) in Petrolina-PE/Juazeiro-BA since April/2008;

» PhD student at UFPE (Universidade Federal de Pernambuco) since
February/2011;

» Full dedication since July/2013.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 2/ 144

Location

Marcus Ramos

0
fomem ol LT
PERNAMBUGQHHT: | ™=

Tocantins, | T

b - BRA 5}‘ L::::-,;M ”*;x’r 5 :E:;L‘ ey i
TR S (| S
174 X Joa { e

e from

nd

{7 ;
o ...

Pamy

Tt

-~ ESFiRITO SANTO

et
10'DE JANEIRO
[CHILE
ANTA CATARINA)
g
: ARGENTINA]
x Vias de Acesso
odovias pavimentodes
Limites

3/ 144

UFPE)

Introduction

Location

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 4 /144

Introduction

Formalization?

v

v

Context-Free Language Theory?
Why?

» How?

v

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 5/ 144

Introduction

The objective of this work is to formalize a substantial part of context-free
language theory in the Coq proof assistant, making it possible to reason
about it in a fully checked environment, with all the related advantages.

» Formalization is the process of writing proofs such that they have a
precise meaning over a simple and well-defined calculus whose rules
can be automatically checked by a machine;

» Context-free language theory is fundamental in the representation and
study of artificial languages, specially programming languages, and in
the construction of their processors (compilers and interpreters);

» The formalization of context-free language theory is a key to the
certification of compilers and programs, as well as to the development
of new languages and tools for certified programming.

More on the next slides.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 6 / 144

Introduction

Summary

o
2]
o
o
o
o
o
o
o
(10
o
12
®

Introduction

Formal Mathematics
Proof Assistants

Coq

Formalization Projects
Context-Free Language Theory
General Picture

Basic Definitions
Closure Properties
Grammar Simplification
Chomsky Normal Form
Pumping Lemma

Conclusions

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 7/ 144

Formal Mathematics

General Picture

» “Informal” mathematics:
» Levels of abstraction may hide errors difficult to trace;
» Non-uniform notation is also a problem.
» Formalization (“computer encoded mathematics”) is a clear trend
towards theoretical development and theory representation;
» Computer-aided reasoning and use of proof assistants (interactive
theorem provers);
» Mechanized checking of proofs (and programs), enabling:
» Checking of every reasoning step against the inference rules of the
underlying logic;
» Uniform notation.
» Advantages:

> Less effort and time;
» Improved reliability.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 8 / 144

Formal Mathematics

Software Development

» Theorem proofs:
» Informal;
» Difficult to build;
» Difficult to check.
» Computer programs:

» Informal;
» Difficult to build;
» Difficult to test.

» Coincidence?

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 9/ 144

Formal Mathematics

Software Development

v

NOT REALLY, as theorem proving and software development have
essentially the same nature;

v

According to the Curry-Howard Isomorphism, to develop a program is
the same as to prove a theorem, and vice-versa;

v

Exploring this similarity his can be beneficial to both activities:

» Reasoning can be brought into programming, and
» Computational ideas can be used in theorem proving.

v

How to improve both then?

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 10 / 144

Formal Mathematics

Perspectives

» Formalization (“computer encoded mathematics”) is the answer;
» Computer-aided reasoning;

» Use of proof assistants, also known as interactive theorem provers.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 11 / 144

Formal Mathematics

Background

Required before starting to use Coq:
» Natural Deduction;
» Untyped Lambda Calculus;
» Typed Lambda Calculus;
» Curry-Howard Isomorphism;
» Type Theory;
» Constructivism and BHK;
» Martin Lof’s Intuitionistic Type Theory;

» Calculus of Constructions with Inductive Definitions.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 12 / 144

Formal Mathematics

Background

Natural
Deduction

Untyped Typed
Lambda Lambda
Calculus Calculus

Calculus of

Constructions Gallina

Curry-
Howard

Discrete

math

Marcus Ramos (UFPE) CFL Theory Formal

Yoes Brtot
Ple aséan

Interactive Theorem Proving
and Program Development

CogpAr: The Cacuus of ndoctiv Cons

TR EOTON

An troduction to the
Theoy of Compater Science.

languages
Machmes

Thomas A. Sudkamp

13 / 144

Formal Mathematics

Natural Deduction

» Calculus for theorem proving;

» Part of Proof Theory;

» Based in simple inference rules that resemble the rules of natural
thinking;

» Each connective is associated to introduction and elimination rules;

» The proof of a theorem (proposition) is a structured sequence of
inference rules that validate the conclusion, usually without depending
on any hypothesis;

» The proof is represented as a tree;
» Gentzen (1935) and Prawitz (1965);

» Originally developed for propositional logic, was later extended for
predicate logic.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 14 / 144

Formal Mathematics

Untyped Lambda Calculus

Formal system used for the representation of computations.

>

>

Based on the definition and application of functions;

Functions are treated as higher-order objects, as they can be passed as
arguments and returned as values from other functions;

Simplicity: only two constructs (“commands”);

Allows the combination of basic functions in the creation of more
complex functions;

Even in the pure version (without constants), allows the representation
of a broad range of datatypes, including booleans, natural numbers,
integers etc, and operations on their values.

Untyped and typed versions.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 15 / 144

Formal Mathematics

Untyped Lambda Calculus

» Alonzo Church, 1903-1995, United States;
» Invented the Lambda Calculus in the 1930s;
» Result of his investigations about the foundations of mathematics;

> Intended to formalize mathematics through the notion of functions,
instead of the notion of sets;

» Although he did not succeed in this objective, his work was of great
importante in other areas, specially in computer science.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 16 / 144

Formal Mathematics

Untyped Lambda Calculus

Mathematical model for:

» Theory, specification and implementation of programming languages,
specially the functional ones.

v

Program verification;

v

Representation of computable functions;

v

Computability theory;

v

Proof theory.

Was used in the demonstration of the undecidability of various problems,
even before the machine-based formalisms (e.g. Turing Machine).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 17 / 144

Formal Mathematics

Typed Lambda Calculus

» Created by Church to avoid the inconsistencies of the untyped version;
» Type tags are associated to lambda terms;

» Variables have base types (z : 0);

» Abstractions and applications create new types accordingly;

» Types must match;

» Less powerful model of computation;

» Type systems for programming languages;

» Equality of terms is decidable;

» Strongly normalizing (all computations terminate);

» (Az.zx)(Ax.zz) and (Az.zzy)(Az.zzy) are not terms of the typed
lambda calculus.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 18 / 144

Formal Mathematics

Curry-Howard Isomorphism

Mathematics is all about:

> Reasoning;

» Computing.
For long time considered as separate areas; even today, ignored by many.
Any relation there?

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 19 / 144

Formal Mathematics

Curry-Howard Isomorphism

YES, according to the Curry-Howard Isomorphism.

» There is a direct relationship between reasoning (as expressed by
first-order logic and natural deduction) and computing (as expressed
by the typed lambda calculus);

» Proofs-as-programs or Propositions-as-types notions;

» First observed by (Haskell) Curry in 1934, later developed and
extended by Curry in 1958 and William Howard in 1969;

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 20 / 144

Formal Mathematics

Curry-Howard Isomorphism

» This has many important consequences as is the basis of modern
software development and computer assisted theorem proofing:

» Reasoning principles and techniques can be brought into software
development;
» Computing (idem) can be used in theorem proving.
» In the simply typed lambda calculus, the function operator (—)
corresponds to the implication connective (=); correspondences also
exist for other operators.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 21 / 144

Formal Mathematics

Curry-Howard Isomorphism

General picture:

Proofs Theorems

Programs Types

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 22 / 144

Formal Mathematics

Curry-Howard Isomorphism

Proofs & Theorems

First of all:

Proofs « Theorems

Programs Types

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 23 / 144

Formal Mathematics

Proofs & Theorems

Example

Proof:
a= (b= c) a
= =8y
c oD (= E)
—— (=
__a=c " (=1
b= (a=c) -
(a=(b=2¢)= (b= (a=0)

Theorem:

(a=(b=1¢)= (b= (a=0c)

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 24 / 144

Formal Mathematics

Curry-Howard Isomorphism
Programs & Types

Also:

Proofs Theorems

Programs ., Types

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 25 / 144

Formal Mathematics

Programs & Types

Example

Program:
x:a— (b—c) z:a
(= E)
rz:b—c y:b
TZY : C (= B)
Az%zzy : (a — ¢) =D
22y - — 1)

M Az zzy : (b— (a— c))
Az@ =) NP A28 z2y : (a — (b— ¢) = (b— (a = ¢))

(=1

Type:
(a—=(b—¢)— (b—(a—c)

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 26 / 144

Formal Mathematics

Curry-Howard Isomorphism
Theorems & Types

Next, it is easy to observe that:

Proofs Theorems
)
Programs Types

Types (specifications) and Theorems (propositions) share the same
syntactic structure.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 27 / 144

Formal Mathematics

Theorems & Types

Example

Type or theorem?

Type:

(a—=(b—¢)— (b—(a—0)
Theorem:

(a=(b=1¢)= (b= (a=0)

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 28 / 144

Formal Mathematics

Curry-Howard Isomorphism

The Isomorphism

‘ Logic | Typed lambda calculus |
= (implication) — (function type)
A (and) X (product type)
Vv (or) + (sum type)
Vv (forall) IT (pi type)
3 (exists) Y. (sigma type)
T unit type
€ bottom type

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 29 / 144

Formal Mathematics

Curry-Howard Isomorphism
Proofs & Programs

Finally, the isomorphism extends to:

Proofs Theorems
(3
Programs Types

One can be obtained directly from the other:
» From Proof to Program: by adding the terms with the corresponding
types;
» From Program to Proof: by eliminating the terms and keeping only
the types.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 30 / 144

Formal Mathematics

Proofs & Programs

Example
Proof:
a=(b=c¢) a
b= c C(:E) b g
a=o = 1)
b= (a=c) ((= D)
(a=0b=¢c)=0b=(a=70)
Program:
z:a—(b—c¢) z:a (= B)
zz:b—c :b B
— a:zy.:c (=D (= E)
z%.xzy: (@ —) (> D)

M Az%zzy : (b— (a = ¢))

Azt (0= Ayb Az% g2y : (a — (b— ¢)) = (b— (a — ¢))

(=1

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 31 / 144

Formal Mathematics

Curry-Howard Isomorphism

Consequences

» To build a program that satisfies a specification (type):
> Interpret the specification as a theorem (proposition);
» Build a proof tree for this theorem;
» Add terms with the corresponding types.

» To build a proof of a theorem:
> Interpret the theorem as a specification;
» Build a program that meets the specification;
» Remove the terms from the derivation tree.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 32 / 144

Formal Mathematics

Curry-Howard Isomorphism

Consequences

Summary:

v

To build a program is the same as to build a proof;

v

To build a proof is the same as to build a program;

v

To verify a program is the same as to verify a proof;

v

Both verifications can be done via simple and efficient type checking
algorithms.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 33 / 144

Formal Mathematics

Type Theory

A Type Theory is a theory that allows one to assign types to variables and
construct complex type expressions. Then, lambda expressions can be
derived to meet a certain type, or the type of an existing expression can be
obained by following the theory's inference rules.

>

Originally developed by Bertrand Russell in the 1910s as a tentative of
fixing the paradoxes of set theory (“is the set composed of all sets that
are not members of themselves a member of itself?”);

The Simply Typed Lambda Calculus is a type theory with a single
operator (—) and was developed by Church in the 1940s as a
tentative of fixing the inconsistencies of the untyped lambda calculus;

Since then it has been extended with many new operators;
Various different type theories exist nowadays;

Martin L6f's Intuitionistic Type Theory is one of the most important.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 34 / 144

Formal Mathematics

Constructivism and BHK

» Every true proposition must be accompanied by a proof of the validity
of the statement; the proof must explain how to build the object that
validates the argument (proposition);

» Proposed by Brouwer, Heyting and Kolgomorov, the BHK
interpretation leaves behind the idea of the truth values of Tarski;

» x: 0 is interpreted as x is a proof of o;

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 35 / 144

Formal Mathematics

Constructivism and BHK

A proof of...

» a = b is a mapping that creates a proof of b from a proof of a
(function);

v

a A b is a proof of a together with a proof of b (pair);

v

a V b is a proof of a or a proof of b together with an indication of the
source (pair);

v

Vx : A.P(x) is a mapping that creates a proof of P(t) for every ¢ in A
(function);

Jz : A.P(z) is an object t in A together with a proof of P(t) (pair).

v

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 36 / 144

Formal Mathematics

Constructivism and BHK

» Constructivism does not use the Law of the Excluded Middle (p vV —p)
or any of its equivalents, that belong to classic logic only:

» Double negation —(—p) = p;
» Proof by contradiction (—a = b) A (ma = —b) = a;
> Peirce’s Law ((p = q) = p) = p.
» A constructive proof is said to have computational content, as it is
possible to “construct” the object that validates the proposition (the
proof is a recipe for building this object);

» A constructive proof enables (computer) code extraction from proofs,
thus the interest for it in computer science.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 37 / 144

Formal Mathematics

Constructivism

According to Troelstra:

“... the insistence that mathematical objects are to be constructed
(mental constructions) or computed; thus theorems asserting the
existence of certain objects should by their proofs give us the

means of constructing objects whose existence is being asserted.”

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 38 / 144

Formal Mathematics

Martin Lof's Intuitionistic Type Theory

A constructive type teory based on:

© First-order logic to represent types and propositions;

© Typed lambda calculus to represent programs and theorems.
and structured around the Curry-Howard Isomorphism.

» It is a powerful theory for sotware development and interactive
theorem proving;

» Also used as a theory for the foundations of mathematics.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 39 / 144

Formal Mathematics

Calculus of Constructions with Inductive Definitions

A richly typed lambda calculus extended with inductive definitions.

Calculus of Constructions developed by Thierry Coquand;

v

v

Constructive type theory;

Later extended with inductive definitions;

v

Used as the mathematical language of the Coq proof assistant

v

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 40 / 144

Formal Mathematics

Calculus of Constructions

» All logical operators (—, A, V,— and 3) are defined in terms of the
universal quantifier (V), using “dependent types”;

» Types and programs (terms) have the same syntactical structure;
» Types have a type themselves (called “Sort”);

» Base sorts are “Prop” (the type of propositions) and “Set” (the type
of small sets);

» Prop: Type(1l), Set : Type(1), Type(i) : Type(i +1),i > 1;
» S = {Prop,Set,Type(i) | i > 1} is the set of sorts;
» Various datatypes can be defined (naturals, booleans etc);

» Set of typing and conversion rules.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 41 / 144

Formal Mathematics

Inductive Definitions

Finite definition of infinite sets.
» “Constructors” define the elements of a set;
» Constructors can be base elements of the set;

» Constructors can be a functions that takes set elements and return
new set elements.

» Manipulation is done via “pattern matching” over the inductive
definitions.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 42 / 144

Formal Mathematics

Inductive Definitions

Booleans

{false,true}
Inductive boolean:
| false: boolean

| true: boolean.

Variable x: boolean.
Definition f: boolean:= false.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 43 / 144

Formal Mathematics

Inductive Definitions

Naturals

{0, 1, 2, 3, ...+ = {0, SO, SsO, SsSsO, ...}

Inductive nat:=
| 0: nat
| S: nat->nat.

Variable y: nat.
Definition zero: nat:= 0.
Definition one: nat:= S 0.
Definition two: nat:

S one.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 44 / 144

Formal Mathematics

Inductive Definitions
String sets

Inductive ss:=
| ss_empty: ss
| ss_item: string->ss
| ss_build: string->ss->ss.

Variable z: ss.
Definition ss0O: ss:= ss_empty.
Definition ssl: ss:= ss_item "abc".
Definition ss2: ss:= ss_build "def" (ss_item '"abc").
Definition ss3: ss:= ss_build "ghi" (
ss_build "def" (ss_item "abc")).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 45 / 144

Formal Mathematics

Inductive Definitions
Pattern matching

Booleans:

Definition negb (x: bool): bool:=
match x with

| false => true

| true => false

end.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 46 / 144

Formal Mathematics

Inductive Definitions
Pattern matching

Naturals:

Definition sub (n: nat): nat :=
match n with

| 0=>0

| Sm=>m
end.

Fixpoint nat_equal (nl n2: nat): bool :=
match nl, n2 with

| 0, 0 => true

| Sm, Sn =>nat_equal m n

| 0, S n => false

| S m, 0 => false
end.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 47 / 144

Proof Assistants

Characteristics

» Software tools that assist the user in theorem proving and program
development;

» First initiative dates from 1967 (Automath, De Bruijn);

» Many provers are available today (Coq, Agda, Mizar, HOL, Isabelle,
Matita, Nuprl...);

> Interactive;
» Graphical interface;
» Proof/program checking;

» Proof/program construction.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 48 / 144

Proof Assistants

© The user writes a statement (proposition) or a type expression
(specification) in the language of the underlying logic;
© He constructs (directly or indirectly):
» A proof of the theorem;
» A program (term) that complies to the specification.

© Directly: the proof/term is written in the formal language accepted by
the assistant;

Q Indirectly: the proof/term is built with the assistance of an interactive
“tactics” language:

© In either case, the assistant checks that the proof/term complies to
the theorem/specification.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 49 / 144

Proof Assistants

Check and/or construct

» Proof assistants check that proofs/terms are correctly constructed;
» This is done via simple type-checking algorithms;

» Automated proof/term construction might exist is some cases, to
some extent, but this is not the main focus;

» Thus the name “proof assistant”;

» Automated theorem proofing might be pursued, due to “proof
irrelevance”;

» Automated program development, on the other hand, is unrealistic.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 50 / 144

Proof Assistants

Main benefits

» Proofs and programs can be mechanically checked, saving time and
effort and increasing reliability;

» Checking is efficient;
» Results can be easily stored and retrieved for use in different contexts;
» Tactics help the user to construct proofs/programs;

» User gets deeper insight into the nature of his proofs/programs,
allowing further improvement.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 51 / 144

Proof Assistants

Applications

v

Formalization and verification of theorems and whole theories;

v

Verification of computer programs;

v

Correct software development;

v

Automatic review of large and complex proofs submitted to journals;

Verification of hardware and software components.

v

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 52 / 144

Proof Assistants

Drawbacks

» Failures in infrastructure may decrease confidence in the results (proof
assistant code, language processors, operating system, hardware etc);

» Size of formal proofs;
» Reduced numer of people using proof assistants;
» Slowly increasing learning curve;

» Resemblance of computer code keeps pure mathematicians
uninterested.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 53 / 144

Overview

» Developed by Huet/Coquand at INRIA in 1984;
» First version released in 1989, inductive types were added in 1991;
» Continuous development and increasing usage since then;

» The underlying logic is the Calculus of Constructions with Inductive
Definitions;

» It is implemented by a typed functional programming with a higher
order logic language called Gallina;

> Interaction with the user is via a command language called Vernacular,

» Constructive logic with large standard library and user contributions
base;

» Extensible environment;

» All resources freely available from http://coq.inria.fr/.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 54 / 144

http://coq.inria.fr/

User session

The proof can be constructed directly ou indirectly.
In the indirect case,

» The initial goal is the theorem/specification supplied by the user;

» The environment and the context are initially empty;

v

The application of a “tactics” substitutes the current goal for zero ou
more subgoals;

v

The context changes and might incorporate new hypotheses;

v

The process is repeated for each subgoal, until no subgoal remains;

v

The proof/term is constructed from the sequence of tactics used.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 55 / 144

Tactics usage

Inference rules map premises to conclusions;

Forward reasoning is the process of moving from premises to
conclusions;
» Example: from a proof of a and a proof of b one can prove a A b;

» Backward reasoning is the process of moving from conclusions to
premises;
» Example: to prove a A b one has to prove a and also prove b;

» Coq uses backward reasoning;
» They are implemented by “tactics”;

» A tactic reduces a goal to its subgoals, if any, or simply proves the
goal.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 56 / 144

Coq

Certified software development

O Write the specifications as type expressions;
© Interpret them as theorems;

© Build the proofs;

© Let the proof assistant check them;

© Convert them to computer programs using the code extraction facility.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 57 / 144

Formalization Projects

Introduction

>

Great and increasing interest in formal proof and program
development over the recent years;
» Main areas include:

» Programming language semantics formalization;
» Mathematics formalization;
» Education.

v

Important projects in both academy and industry;
Top 100 theorems (91% formalized as of July/2015);
Check http://www.cs.ru.nl/"freek/100/;

» One way road.

v

v

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 58 / 144

http://www.cs.ru.nl/~freek/100/

Formalization Projects

Four Color Theorem

» Stated in 1852, proved in 1976 and again in 1995;

» The two proofs used computers to a some extent, but were not fully
mechanized;

» In 2005, Georges Gonthier (Microsoft Research) and Benjamin Werner
(INRIA) produced a proof script that was fully checked by a machine;

» Milestone in the history of computer assisted proofing;
» 60,000 lines of Coq script and 2,500 lemmas;
» Byproducts.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 59 / 144

Formalization Projects

Four Color Theorem

“Although this work is purportedly about using computer
programming to help doing mathematics, we expect that most of
its fallout will be in the reverse direction using mathematics to
help programming computers.”

Georges Gonthier

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 60 / 144

Formalization Projects

Odd Order Theorem

» Also known as the Feit-Thomson Theorem;

» Important to mathematics (in the classification of finite groups) and
cryptography;

» Conjectured in 1911, proved in 1963;

» Formally proved by a team led by Georges Gonthier in 2012;

» Six years with full-time dedication;

» Huge achievement in the history of computer assisted proofing;

» 150,000 lines of Coq script and 13,000 theorems;

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 61 / 144

Formalization Projects

Compiler Certification

» CompCert, a fully verified compiler for a large subset of C that
generates PowerPC code;

» Object code is certified to comply with the source code in all cases;
» Applications in avionics and critical software systems;

» Not only checked, but also developed in Cogq;

» Three persons-years over a five yers period;

» 42,000 lines of Coq code.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 62 / 144

Formalization Projects

Microkernel Certification

» Critical component of operating systems, runs in privileged mode;

» Harder to test in all situations;

» selL4, written in C (10,000 lines), was fully checked in HOL/Isabelle;
» No crash, no execution of any unsafe operation in any situation;

» Proof is 200,000 lines long;

» 11 persons-years, can go down to 8, 100% overhead over a
non-certified project.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 63 / 144

Formalization Projects

Digital Security Certification

» JavaCard smart card platform;

» Personal data such as banking, credit card, health etc;

» Multiple applications by different companies;

» Confidence and integrity must be assured;

» Formalization of the behaviour and the properties of its components;
» Complete certification, highest level achieved;

» INRIA, Schlumberger and Gemalto.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 64 / 144

Context-Free Language Theory

Overview

» Part of Formal Language Theory (Chomsky Hierarchy):

» Regular Languages;

Context-Free Languages;
Context-Sensitive Languages;
Recursively Enumerable Languages.

» Developed from mid 1950s to late 1970s;

» Relevant to the representation, study and implementation of artificial
languages;

vVvyy

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 65 / 144

Context-Free Language Theory

Overview

Includes:

» Context-free grammars, pushdown automata and notations (e.g.
BNF);

» Equivalence of grammars and automata;
» Grammar simplification;

» Normal forms;

» Derivation trees, parsing and ambiguity;
» Determinism and non-determinism;

» Closure properties;

» Decidable and undecidable problems;

» Relation with other language classes.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 66 / 144

General Picture

Origins

» Experience in teaching language and automata theory;

» Book Linguagens Formais published in 2009 (with J.J. Neto and I.S.
Vega);

» Algorithms were used instead of demonstrations for most theorems;

> Interest in formalization after studying logic, lambda calculus, type
theory and Cogq;

» Desire to follow the lines of the book and formalize its contents;

> Related work:
» Regular languages have already been formalized to a large extend,;
» Some formalization of context-free languages appeared in recent years,
mostly in HOL4 and Agda.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 67 / 144

General Picture

Objectives

To formally state and prove the following fundamental results on
context-free language theory:
© Closure properties:
» Union;
» Concatenation;
> Kleene star.

© Grammar simplification:

» Elimination of empty rules;

» Elimination of unit;

» Elimination of useless symbols;

» Elimination of inaccessible symbols.

© Chomsky Normal Form;
© Pumping Lemma.

Six main theorems.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 68 / 144

General Picture

Current Status

» 600+ lemmas and theorems, 20+ libraries, 25.000+ lines of scripts;
> 2 year effort;
» Representation of all relevant objects of the universe of discourse using
inductive definitions for types and propositions:
» Terminal and non-terminal symbol sets;
» Sentence and sentential forms;
> Rules;
» Context-free grammars;
» Derivations:
> Trees.
» Declarative style;
» Closer to textbook definitions;
» More abstract to deal with;
» Does not allow for the extraction of certified programs.

» Currently finishing the formalization of the Pumping Lemma.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 69 / 144

Basic Definitions

Context-Free Grammar

G = (V,%,P,S), where:
» V is the vocabulary of G;

v

3 is the set of terminal symbols;

v

N =V \ X is the set of non-terminal symbols;
P is the set of rules o — B, with o« € N and 8 € V*;
» S € N is the start symbol.

v

Record cfg (non_terminal terminal : Type): Type:= {
start_symbol: non_terminal,
rules: non_terminal — sf — Prop;
rules_finite:
d n: nat,
3 ntl: nlist,
3 t1: tlist,
rules_finite_def start_symbol rules n ntl tl }.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 70 / 144

Basic Definitions

Context-Free Grammar

Making sure that cfg represents a context-free grammar:

>

>

General types might have an infinite number of elements;

We must check that the rules of the grammar are built from finite sets
of terminal and non-terminal symbols;

We must also check that the set of rules is finite;

The predicate rules_finite_def is used to make sure that these
conditions are satisfied for every grammar in the formalization, either
user-defined or constructed;

A list of non-terminal symbols (nt1), a list of terminal symbols (t1)

and an upper bound on the length of the right-hand side of the rules
(n) must be supplied.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 71 / 144

Basic Definitions

Example

G=({5,A, B, a,b},{a,b},{S — aS", 5" — b},S’) generates the
language a*b.

Inductive ntl: Type:=|S | A| B.

Inductive t1: Type:= | a | b.

Inductive rsl: ntl — list (ntl + tl) — Prop:=
rl: rs1 S’ [inr a; inl S']

| r2: rs1S' [inr b].

Definition gl: cfgntl t1:= {]
start_symbol:= S’;

rules:= rsli;

rules_finite:= rsi_finite |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 72 / 144

Basic Definitions

Derivation

Substitution process:
s1 derives so by application of zero or more rules: s; =* so.

Inductive derives

(non_terminal terminal : Type)

(g : cfgnon_terminal terminal)
sf — sf — Prop =

| derives_refl:
Vs : sf,
derives g s s

| derives_step:
V (sl s2s3: sf)
vV (left : non_terminal)
V (right : sf),
derives g s1 (s2 ++inl left :: s3) —
rules g left right — derives g s1 (s2 ++right ++s3)

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 73 / 144

Basic Definitions

Derivation

» Predicate generates: a derivation that begins with the start symbol
of the grammar;

» Predicate produces: a derivation that begins with the start symbol of
the grammar and ends with a sentence.

derives
7\

S=2a=>wm=>.. o 1=>0, >w

generates

~
produces

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 74 / 144

Basic Definitions

Example

S = aS = aaS = aab

Lemma produces_gl_aab:

produces gl [a; a; b].

Proof.

unfold produces.

unfold generates.

simpl.

apply derives_step with (s2:=[inr a; inr a])(left:=S')(right:=[inr b]).
apply derives_step with (s2:=[inr a])(left:=S’)(right:=[inr a;inl S']).
apply derives_start with (left:=S')(right:=[inr a;inl S']).

apply ril.

apply ril.

apply ri2.

Qed.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 75 / 144

Basic Definitions

Grammar Equivalence

g1 =92
if they generate the same language, that is,
Vs, (S1 =0 s) <> (S =0 s)

Definition g_equiv

(non_terminall non_terminal2 terminal : Type)
(gl: cfg non_terminall terminal)

(g2: cfg non_terminal2 terminal): Prop:=

V s: sentence,

produces gl s <+ produces g2 s.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 76 / 144

Basic Definitions

Context-Free Language

» A language is a set of strings over a given alphabet;

» A context-free language is a language that is generated by some
context-free grammar: L(G) = {w|S =5 w}.
Definition lang (terminal: Type):= sentence — Prop.

Definition lang_of_g (g: cfg): lang :=
fun w: sentence = produces g w.

Definition lang_eq (1 k: lang) :=
Vw lw+kw

Definition cfl (terminal: Type) (1: lang terminal): Prop:=
J non_terminal: Type,

J g cfgnon_terminal terminal,

lang_eql (lang_of_g g).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 77 / 144

Basic Definitions

Generic CFG Library

General purpose lemmas:

>

>

>

Vg, 51,52, 83, (51 =5 s2) = (82 =7 s3) = (51 = s3)

Vg, s1,82,8,8, (1 =7 82) = (s-51° s' =7 5-52- s')

Vg, s1, 52,83, 84, (51 =7 52) = (83 =7 54) — (8183 =7 s2- 54)

Vg, 51, 52,53, (5152 i; s3) — 351, 85| (s3 = 57 - 55) A (51 :>;

s1) A (s2 = s5)

Vg,51,82,n,w, (s1-1- 82 =7 w) — Jw'| (n =} w')

Vg,n,w, (n =7 w) = (n —4 w)V(3Iright |n —4 right Aright =7 w)
V91,92, 93, (91 = 92) A (92 = g3) = (91 = g3)

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 78 / 144

Basic Definitions

Methodology

For closure properties, grammar simplification and Chomsky normal form:
O Inductively define the new non-terminal symbols (if necessary);
© Inductively define the rules of the new grammar;
© Define the new grammar;
© Show that the new grammar has the desired properties;
© Consolidate the results.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 79 / 144

Closure Properties

Overview

Context-free languages are closed under union, concatenation and
Kleene star.

» Define union, concatenation and Kleene star operations;
» Prove that the resulting languages are context-free;

> Prove that the resulting languages contain exactly the expected
strings.

First with grammars, then with languages.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 80 / 144

Closure Properties

Union

Definitions

Construct g3 such that L(g3) = L(g1) U L(g2):

Inductive g_uni_nt (non_terminal_1 non_terminal_2: Type): Type:=
| Start_uni

| Transfl_uni_nt: non_terminal_1 — g_uni_nt

| Transf2_uni_nt: non_terminal_2 — g_uni_nt.

Definition g_uni
(non_terminal_1 non_terminal_2 terminal : Type)
(gl: cfg non_terminal_1 terminal)
(g2: cfg non_terminal_2 terminal)
(cfg g_uni_nt terminal):=
{| start_symbol:= Start_uni;
rules:= g_uni_rules gl g2;
rules_finite:= g_uni_finite gl g2 |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 81 / 144

Closure Properties

Union

Definitions

Inductive g_uni_rules
(non_terminal_1 non_terminal_2 terminal : Type)
(gl: cfg non_terminal_1 terminal)
(g2: cfg non_terminal_2 terminal)
: g_uni_nt — sfu — Prop :=
| Startl_uni:
g_uni_rules gl g2 Start_uni [inl (Transfl_uni_nt (start_symbol g1))]
| Start2_uni:
g_uni_rules gl g2 Start_uni [inl (Transf2_uni_nt (start_symbol g2))]

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 82 / 144

Closure Properties

Union

Definitions

| Liftl_uni:

V nt: non_terminal_1,

V s: sfl,

rules gl nt s —

g_uni_rules gl g2 (Transfl_uni_nt nt) (map g_uni_sf_liftl s)
| Lift2_uni:

V nt: non_terminal_2,

V s: sf2,

rules g2 nt s —

g_uni_rules gl g2 (Transf2_uni_nt nt) (map g_uni_sf_1ift2 s).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 83 / 144

Closure Properties

Union

Correctness

Vgl, 92, S1, S2, (Sl =>;1 s1 — S3 =>;3 81) AN (S2 :>;2 S9 — S3 :>23 82)

Theorem g_uni_correct:

vV gl. cfgnon_terminal_1 terminal,

vV g2: cfg non_terminal_2 terminal,

V sl: sf1l,

V s2: sf2,

(generates gl s1 — generates (g_uni gl g2) (map g_uni_sf_liftl s1))
A

(generates g2 s2 — generates (g_uni gl g2) (map g_uni_sf_1ift2 s2)).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 84 / 144

Closure Properties

Union

Completeness

Vs3, (S5 =7, s3) = (S1 =7, s3) V (S2 =, s3)

Theorem g_uni_correct_inwv:

vV gl. cfgnon_terminal_1 terminal,

vV g2: cfg non_terminal_2 terminal,

V s: sfu,

generates (g_uni gl g2) s —

(s=[inl (start_symbol (g_uni g1 g2))]) Vv

(3 si:sfl, (s=(map g_uni_sf_liftl sl) A generates gl s1)) V
(3 s2: sf2, (s=(map g_uni_sf_lift2 s2) A generates g2 s2)).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 85 / 144

Closure Properties

Union
Proofs Outline

» The correctness proof is straightforward and was obtained directly
from the definition of the corresponding grammars;

» The completeness proofs is more complicated, and was constructed by
induction on the inductive definition derives, with extensive case
analysis;

» Equivalent statements were proved using context-free languages
instead of context-free grammars:

Inductive 1_uni (11 12: lang terminal): lang terminal:=
| 1 _uni_11:V s: sentence, 11 s — 1_uni 1112 s
| 1_uni_12:V s: sentence, 12 s — 1_uni 11 12 s.

Theorem 1_uni_is_cfl:
¥V 11 12: lang terminal, cfl 11 — cf1 12 — cf1 (1_uni 11 12).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 86 / 144

Closure Properties

Concatenation

Definitions

Construct g3 such that L(g3) = L(g1) - L(g2):

Inductive g_cat_nt (non_terminal_1 non_terminal_2 terminal : Type)
. Type:=

| Start_cat

| Transfl_cat_nt: non_terminal_1 — g_cat_nt

| Transf2_cat_nt: non_terminal_2 — g_cat_nt.

Definition g_cat
(non_terminal_1 non_terminal_2 terminal : Type)
(gl: cfg non_terminal_1 terminal)
(g2: cfg non_terminal_2 terminal)
(cfg g_cat_nt terminal):=
{| start_symbol:= Start_cat;
rules:= g_cat_rules gl g2;
rules_finite:= g_cat_finite gl g2 |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 87 / 144

Closure Properties

Concatenation

Definitions

Inductive g_cat_rules
(non_terminal_1 non_terminal_2 terminal : Type)
(gl: cfg non_terminal_1 terminal)
(g2: cfg non_terminal_2 terminal)
. g_cat_nt — sfc — Prop :=
| New_cat:
g_cat_rules gl g2 Start_cat
([inl (Transfl_cat_nt (start_symbol gl))]++
[inl (Transf2_cat_nt (start_symbol g2))])

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 88 / 144

Closure Properties

Concatenation

Definitions

| Liftl_cat:

VY nt s,

rules gl nt s —

g_cat_rules gl g2 (Transfl_cat_nt nt) (map g_cat_sf_liftl s)
| Lift2_cat:

YV nt s,

rules g2 nt s —

g_cat_rules gl g2 (Transf2_cat_nt nt) (map g_cat_sf_1ift2 s).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 89 / 144

Closure Properties

Concatenation

Correctness

Vg1 g2, s1, S2,(S1 =>;1 s1) A (S2 =>;2 s9) — (S :>;3 5182)

Theorem g_cat_correct:

vV gl. cfgnon_terminal_1 terminal,

vV g2: cfg non_terminal_2 terminal,

V sl: sf1l,

V s2: sf2,

generates gl s1 A generates g2 s2 —

generates (g_cat gl g2) ((map g_cat_sf_liftl s1)++
(map g_cat_sf_lift2 s2)).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 90 / 144

Closure Properties

Concatenation

Completeness

Vss3, (Sg :>;3 83) — ds1, 89 | (53 = 81 - 52) A (Sl =>;1 81) A\ (S2 :>;2 82)

Theorem g_cat_correct_inwv:

V gl: cfg non_terminal_1 terminal,

vV g2: cfg non_terminal_2 terminal,

V s: sfc,

generates (g_cat gl g2) s —

s = [inl (start_symbol (g_cat gl g2))] V

ds1: sfl,

ds2: sf2,

s =(map g_cat_sf_liftl sl1)++(map g_cat_sf_lift2s2) A
generates gl s1 A generates g2 s2.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 91 / 144

Closure Properties

Concatenation
Proofs Outline

» Both the correctness and the completeness proofs are constructed by
induction on the inductive definition derives, with extensive case
analysis.

» Equivalent statements were proved using context-free languages
instead of context-free grammars:

Inductive 1_cat (11 12: lang terminal): lang terminal:=

| 1_cat_app: V sl s2: sentence,
11 s1 - 12 82 — 1_cat 11 12 (sl ++s2).

Theorem 1_cat_is_cfl:

v 11 12: lang terminal,
cfl1ll — cfl 12 — cfl (l_Cat 11 12).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 92 / 144

Closure Properties

Kleene Star

Definitions

Construct go such that L(g2) = (L(g1))*:

Inductive g_clo_nt (non_terminal : Type): Type :=
| Start_clo:g_clo_nt
| Transf_clo_nt : non_terminal — g_clo_nt.

Definition g_clo (g: cfg non_terminal terminal):
(non_terminal terminal : Type)
(g: cfg g_clo_nt terminal):=
{| start_symbol:= Start_clo;
rules:= g_clo_rules g;
rules_finite:= g_clo_finite g |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 93 / 144

Closure Properties

Kleene Star

Definitions

Inductive g_clo_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
. g_clo_nt — sfc — Prop :=
| Newl_clo:
g_clo_rules g Start_clo ([inl Start_clo] ++
[inl (Transf_clo_nt (start_symbol g))])
| New2_clo:
g_clo_rules g Start_clo]
| Lift_clo:
V nt: non_terminal,
V s: sf,
rules gnt s —
g_clo_rules g (Transf_clo_nt nt) (map g_clo_sf_lift s).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 94 / 144

Closure Properties

Kleene Star

Correctness

Y1, s1, S2,(S9 :>;2 €) A ((S2 :>;2 s2) A (S1 :>;1 s1) = So :>;2 S9 - 81)

Theorem g_clo_correct:

V g cfg non_terminal terminal,

V s: sf,

V s': sfc,

generates (g_clo g) nil A

(generates (g_clo g) s’ A generatesgs —
generates (g_clo g) (s'++ map g_clo_sf_lift s)).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 95 / 144

Closure Properties

Kleene Star

Completeness

Vsa, (So =7, S2) = (s2 =€) V (Is1, sh| (s2 = s5-51) N (S =7,
8/2) VAN (Sl :>;1 81))

Theorem g_clo_correct_inv:

V g cfg non_terminal terminal,

V s: sfc,

generates (g_clo g) s —

(s=]) v

(s=[inl (start_symbol (g_clo g))]) V

(3 s': sfc,

38" sf,

generates (g_clo g) s' A generates g s’ A s=s’ ++map g_clo_sf_lift s").

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 96 / 144

Closure Properties

Kleene Star
Proofs Outline

» The correctness proof is straightforward and are obtained directly from
the definition of the corresponding grammars;

» The completeness proofs is more complicated, and are constructed by
induction on the inductive definition derives, with extensive case
analysis.

» Equivalent statements were proved using context-free languages
instead of context-free grammars:

Inductive 1_clo (1: lang terminal): lang terminal:=
| 1_clo_nil: 1 clo 1]

| 1_clo_app: V sl s2: sentence,

(1_clol) s1 182 —1_clol (sl ++s2).

Theorem 1_clo_is_cfl:
vV 1: lang terminal, cf1 1 — cfl (1_clo 1).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 97 / 144

Grammar Simplification

Overview

Grammar simplification aims at obtaining new and simpler grammars that
are equivalent to the original ones:

» Simpler means:

» They contain only symbols and rules that are effectively used in the
derivation of some sentence;

» They do not contain unit rules (e.g. A — B);

» They do not contain empty rules (e.g. A — €), except for a special
case.

» Equivalent means that they generate the same language.

Important to reduce the complexity of grammars and thus (i) simplify its
understanding, increase the efficiency of parsers obtained from them and
(iii) allow their normalization.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 98 / 144

Grammar Simplification

Elimination of empty rules
Concept

» An empty rule r € P is a rule whose right-hand side (3 is empty (e.g.
X —e);

» We formalize that for all G, there exists G’ such that L(G) = L(G’)
and G’ has no empty rules, except for a single rule S — € if e € L(G);

in this case, S (the initial symbol of G’) does not appear on the
right-hand side of any rule in G’.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 99 / 144

Grammar Simplification

Elimination of empty rules

Definitions

Definition empty
(g: cfg terminal _) (s: non_terminal + terminal): Prop:=
derives g [s] []-

Inductive non_terminal’: Type:=
| Lift_nt: non_terminal — non_terminal’
| New_ss.

Definition g_emp
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal’ terminal :=
{| start_symbol:= New_ss;
rules:= g_emp_rules g;
rules_finite:= g_emp_finite g |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 100 / 144

Grammar Simplification

Elimination of empty rules

Definitions

Inductive g_emp_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal’ — sf' — Prop =
| Lift_direct:
V left: non_terminal,
V right: sf,
right #[] — rules g left right —
g_emp_rules g (Lift_nt left) (map symbol_lift right)

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 101 / 144

Grammar Simplification

Elimination of empty rules

Definitions

| Lift_indirect:

V left: non_terminal,

V right: sf,

g_emp_rules g (Lift_nt left) (map symbol_lift right)—

V sl s2: sf,

¥ s: non_terminal,

right = s1 ++(inl s) 11 82 —

empty g (inl s) —

sl++s2 #[] —

g_emp_rules g (Lift_nt left) (map symbol_lift (sl ++s2))
| Lift_start_emp:

g_emp_rules g New_ss [inl (Lift_nt (start_symbol g))].

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 102 / 144

Grammar Simplification

Elimination of empty rules

Example

Suppose that X, A, B, C are non-terminals, of which A, B and C are
nullable, a,b and c are terminals and X — aAbBcC is a rule of g. Then,
the above definitions assert that X — aAbBcC is a rule of g_emp g, and
also:

v

X — aAbBg;
X — abBceC;
X — aAbeC;
X — aAbc;
X — abBc;
X — abeC;
X — abe.

v

v

v

v

v

v

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 103 / 144

Grammar Simplification

Elimination of empty rules
Definitions

Definition g_emp’
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg (non_terminal' _) terminal :=
{| start_symbol:= New_ss _;
rules:= g_emp _rules g;
rules_finite:= g_emp _finite g |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015

104 / 144

Grammar Simplification

Elimination of empty rules

Definitions

Inductive g_emp'_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal non_terminal — sf' — Prop :=
| Lift_all:
V left: non_terminal’ _,
YV right: sf’,
rules (g_emp g) left right — g_emp'_rules g left right
| Lift_empty:
empty g (inl (start_symbol g)) —
g_emp'_rules g (start_symbol (g_emp g)) [].

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 105 / 144

Grammar Simplification

Elimination of empty rules

Correctness

Theorem g_emp'_correct:

V g cfg non_terminal terminal,

g_equiv (g_emp’ g) g A

(generates_empty g — has_one_empty_rule (g_emp' g)) A
(~ generates_empty g — has_no_empty_rules (g_emp' g)) A
start_symbol_not_in_rhs (g_emp' g).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 106 / 144

Grammar Simplification

Elimination of empty rules
Proof Outline

The definition of g_equiv, when applied to the previous theorem, yields:

V s: sentence,
produces (g_emp' g) s <> produces g s.

» For the — part, the strategy is to prove that for every rule
left =4 emp Tight, either left —, right is a rule of g or
left =g right;

» For the < part, the strategy is a more complicated one, and involves
induction over the number of derivation steps in g.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 107 / 144

Grammar Simplification

Elimination of unit rules
Concept

» A unit rule r € P is a rule whose right-hand side /3 contains a single
non-terminal symbol (e.g. X — Y);

» We formalize that for all G, there exists G’ such that L(G) = L(G")
and G’ has no unit rules.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 108 / 144

Grammar Simplification

Elimination of unit rules

Definitions

Inductive unit
(terminal non_terminal : Type)
(g: cfg terminal non_terminal)
(a: non_terminal)

non_terminal — Prop:=
| unit_rule:

v (b: non_terminal),

rules g a [inl b] »unit gab
| unit_trans:

V b c: non_terminal,

unit gab —unit gbc - unit gac.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 109 / 144

Grammar Simplification

Elimination of unit rules
Definitions

Definition g_unit
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal terminal :=
{| start_symbol:= start_symbol g;
rules:= g_unit_rules g;
rules_finite:= g_unit_finite g |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 110 / 144

Grammar Simplification

Elimination of unit rules

Definitions

Inductive g_unit_rules
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal — sf — Prop =
| Lift_direct':
V left: non_terminal,
vV right: sf,
(V r:non_terminal, right # [inl r]) —
rules g left right —
g_unit_rules g left right

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 111 / 144

Grammar Simplification

Elimination of unit rules

Definitions

| Lift_indirect”
V a b: non_terminal,
unit gab —
vV right: sf,
rules g b right —
(V c:non_terminal, right # [inl c]) —
g_unit_rules g a right.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 112 / 144

Grammar Simplification

Elimination of unit rules

Example

Suppose that N = {5, X, Y, Z}, ¥ = {a, b, ¢} and
P={S—>XX—>aX, XYY > XY > Z 7Z—c}. The
previous definitions assert that P’ has the following rules:

» S — aX;
» S — XbvY;
» 5" ¢

» X — aX;
» X — XbY;
» X — ¢

» Y — XbY;
» Y — ¢

> 7/ —c

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 113 / 144

Grammar Simplification

Elimination of unit rules

Correctness

Theorem g_unit_correct:
V g cfg non_terminal terminal,
g_equiv (g_unit g) g A has_no_unit_rules (g_unit g).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 114 / 144

Grammar Simplification

Elimination of unit rules
Proof Outline

Consider g_equiv (g_unit g) g of the previous statement:

» For the — part, the strategy adopted is to prove that for every rule
left =4 unit right of (g_unit g), either left —, right is a rule of g
or left :_>; right;

» For the < part, the strategy is also a more complicated one, and
involves induction over a predicate that is equivalent to derives
(derives3), but generates the sentence directly without considering the
application of a sequence of rules, which allows one to abstract the
application of unit rules in g.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 115 / 144

Grammar Simplification

Elimination of useless symbols
Concept

» A symbol s € V is useful if it is possible to derive a sentence from it
using the rules of the grammar. Otherwise, s is called an useless
symbol;

» A useful symbol s is one such that s =* w, with w € ¥*;

» We formalize that, for all G such that L(G) # (), there exists G’ such
that L(G) = L(G’) and G’ has no useless symbols.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 116 / 144

Grammar Simplification

Elimination of useless symbols
Definitions

Definition useful

(terminal non_terminal : Type)

(g: cfgnon_terminal terminal)

(s: non_terminal + terminal): Prop:=
match s with

| inr t = True

inl n = d s: sentence, derives inl n| (map term_lift s
g P
end.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 117 / 144

Grammar Simplification

Elimination of useless symbols
Definitions

Definition g_use
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal terminal:=
{| start_symbol:= start_symbol g;
rules:= g_use_rules g;
rules_finite:= g_use_finiteg |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 118 / 144

Grammar Simplification

Elimination of useless symbols
Definitions

Inductive g_use_rules
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal — sf — Prop =
| Lift_use:

V left: non_terminal,

vV right: sf,

rules g left right —

useful g (inl left) —

(V s:non_terminal + terminal, In s right — useful g s) —

g_use_rules g left right.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 119 / 144

Grammar Simplification

Elimination of useless symbols

Correctness

Theorem g_use_correct:
V g cfg non_terminal terminal,
non_empty g — g_equiv (g_use g) g A has_no_useless_symbols (g_use g).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 120 / 144

Grammar Simplification

Elimination of useless symbols
Proof Outline

Consider g_equiv (g_use g) g of the previous statement:

» The — part of the g_equiv proof is straightforward, since every rule
of g_use is also a rule of g;

» For the converse, it is necessary to show that every symbol used in a
derivation of g is useful, and thus all the rules used in this derivation
also appear in g_use.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 121 / 144

Grammar Simplification

Elimination of inaccessible symbols
Concept

» A symbol s € V is accessible if it is part of at least one string
generated from the root symbol of the grammar. Otherwise, it is
called an inaccessible symbol,

» An accessible symbol s is one such that S =* asg, with o, 8 € V*;

» We formalize that for all G, there exists G’ such that L(G) = L(G’)
and G’ has no inaccessible symbols.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 122 / 144

Grammar Simplification

Elimination of inaccessible symbols

Definitions

Definition accessible

(terminal non_terminal : Type)

(g : cfgnon_terminal terminal)

(s: non_terminal + terminal): Prop:=

3 s1 s2: sf, derives g [inl (start_symbol g)] (s1 ++s :: s2).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 123 / 144

Grammar Simplification

Elimination of inaccessible symbols
Definitions

Definition g_acc
(terminal non_terminal : Type)
(g : cfgnon_terminal terminal)
cfg non_terminal terminal :=
{| start_symbol:= start_symbol g;
rules:= g_acc_rules g;
rules_finite:= g_acc_finiteg |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 124 / 144

Grammar Simplification

Elimination of inaccessible symbols

Definitions

Inductive g_acc_rules

(terminal non_terminal : Type)

(g : cfgnon_terminal terminal)

: non_terminal — sf — Prop =

| Lift_acc :V left: non_terminal,
vV right: sf,
rules g left right — accessible g (inl left) —
g_acc_rules g left right.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 125 / 144

Grammar Simplification

Elimination of inaccessible symbols
Correctness

Theorem g_acc_correct:
V g cfg non_terminal terminal,
g_equiv (g_acc g) g A has_no_inaccessible_symbols (g_acc g).

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 126 / 144

Grammar Simplification

Elimination of inaccessible symbols
Proof Outline

Consider g_equiv (g_acc g) g of the previous statement:

» The — part of the g_equiv proof is also straightforward, since every
rule of g_acc is also a rule of g;

» For the converse, it is necessary to show that every symbol used in the
derivation of g is accessible, and thus the rules used in this derivation
also appear in g_acc.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 127 / 144

Grammar Simplification

Unification

All in the Same Grammar

Theorem g_simpl:

V g: cfg non_terminal terminal,

non_empty g —

Jg': cfg (non_terminal non_terminal) terminal,

g_equivg gA

has_no_inaccessible_symbols g' A

has_no_useless_symbols g' A

(generates_empty g — has_one_empty_ruleg') A
(~ generates_empty g — has_no_empty_rules g') A
has_no_unit_rules g A
start_symbol_not_in_rhs g’

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 128 / 144

Grammar Simplification

Unification
Proof Outline

Requires the proof that certain operations preserve some properties of the
original grammar:

No useless symbols AND
No unit rules AND
No empty rules No empty rules

Original grammar No unit rules AND No inaccessible symbols AND
No empty rules No useless symbols AND
No unit rules AND
No empty rules

Marcus Ramos (UFPE) CFL Theory Formalizati July 10th, 2015 129 / 144

Chomsky Normal Form

Concept

VG = (V,%, P, S),
G = (v,s, P8 |
L(G) = L(G")A
Via—pB)eP,(BEX)V(BEN-N)

Important for:
» Decidability of the membership problem ;
» Some parsing algorithms (e.g. CYK);

» Pumping Lemma.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 130 / 144

Chomsky Normal Form

Example

As an example, consider G = ({5, XY, Z,a,b, c},{a,b,c}, P,S") with P
equal to:

{8 — XYZd,
X — a,
Y — b
Z — ¢}

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 131 / 144

Chomsky Normal Form

Example

The CNF grammar G’, equivalent to G, would then be the one with the
following set of rules:

{8 — X[vZd],
YZd — Y[Zd],
Zd] — Zld),

[d — d,

X — a,

Y — b

Z — ¢}

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 132 / 144

Chomsky Normal Form

Definitions

Inductive non_terminal’ (non_terminal terminal : Type): Type:=
| Lift_r: sf — non_terminal’.

Definition g_cnf
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal' terminal :=
{| start_symbol:= Lift_r [inl (start_symbol g)];
rules:= g_cnf_rules g;
rules_finite:= g_cnf_finiteg |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 133 / 144

Chomsky Normal Form

Definitions

Inductive g_cnf_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal — sf’ — Prop:=
| Lift_cnf_t:
V t: terminal,
V left: non_terminal,
V sl s2: sf,
rules g left (sl++[inr t]++s2) —
g_cnf_rules g (Lift_r [inr t]) [inr t]
| Lift_cnf_1
V left: non_terminal,
V t: terminal,
rules g left [inr t] —
g_cnf_rules g (Lift_r [inl left]) [inr t]

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 134 / 144

Chomsky Normal Form

Definitions

| Lift_cnf_2:
V left: non_terminal,
V s1 s2: symbol,
YV beta: sf,
rules g left (sl :: s2 :: beta) —
g_cnf_rules g (Lift_r [inl left])
[inl (Lift_r [s1]); inl (Lift_r (s2 :: beta))]
| Lift_cnf_3:
V left: sf,
V s1 s2 s3: symbol,
V beta: sf,
g_cnf_rules g (Lift_r left)
[inl (Lift_r [s1]); inl (Lift_r (s2:: s3 :: beta))] —
g_cnf_rules g (Lift_r (s2 :: s3 :: beta))
[inl (Lift_r [s2]); inl (Lift_r (s3 :: beta))].

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 135 / 144

Chomsky Normal Form

Definitions

Definition g_cnf’
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal’ terminal:=
{| start_symbol:= start_symbol (g_cnf g);
rules:= g_cnf'_rules g;
rules_finite:= g_cnf'_finite g |}.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 136 / 144

Chomsky Normal Form

Definitions

Inductive g_cnf'_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal’ — sf’ — Prop:=
| Lift_cnf’_all:

V left: non_terminal’,

vV right: sf',

g_cnf_rules g left right —

g_cnf'_rules g left right
| Lift_cnf’ _new:

g_cnf'_rules g (start_symbol (g_cnf g)) [].

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 137 / 144

Chomsky Normal Form

Correctness

Theorem g_cnf_final:

V g: cfg non_terminal terminal,

(produces_empty g V ~ produces_empty g) A
(produces_non_empty g V ~ produces_non_empty g) —
Jg" cfgnon_terminal’ terminal,

g_equiv g g A

(is_cnf g' V is_cnf_with_empty_rule g’) A
start_symbol_not_in_rhs g’

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 138 / 144

Chomsky Normal Form

Proof Outline

The proof of this theorem requires, among other things, that the original
grammar is first simplified according to the results discussed in the previous
section.

» For the < part of g_equiv, the strategy adopted is to prove that for

every rule left — right of g, either left — right is a rule of g_cnf
g or left =" right in g_cnf g;

» For the — part, that is, (s; =9 enfg 52) — (81 =} s2), it is enough
to note that the sentential forms of g are embedded in the sentential
forms of g_cnf g, specifically in the arguments of the constructor
Lift_r of non_terminal’. Thus, a simple extraction mechanism
allows the implication to be proved by induction on the structure of
the sentential form s;.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 139 / 144

Pumping Lemma

Concept

VL, context-free (L) —
dn|Vs, (s€ L)A(|]s| >n)—

(s = uwvwzy) A (Juz| > 0) A (Jowz| < n) A (Vi, uww'wz'y € L)

v

A property of all context-free languages;

v

States that from certain strings of the language it is possible to
generate an infinite number of other strings that also belong to the
language;

v

Is used to prove that certain languages are not context-free;

v

Explores the finiteness of the number of non-terminals, in particular in
the CNF grammar, and makes extensive use of (binary) trees.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 140 / 144

Conclusions

Computers and mathematics

» Practitioners base is still small;

» Learning curve grows (very) slowly;

» Advantages of formalization are immense;

» Important industrial projects;

» Important theoretical works;

» Disadvantages are being gradually eliminated;

» The trend is clearly set.

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 141 / 144

Conclusions

This Formalization

>

Comprehensive set of fundamental results on context-free language
theory;

v

First formalization in Coq (preliminary work by Filliatre);

v

First formalization at all of the Pumping Lemma;

Framework to advance with the formalization of CFLs and related
theories.

v

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 142 / 144

Conclusions

Plans for the Future

>

Obtain the degree (deadline Feb/2016);

Promote Coq and mathematical formalization through speechs,
workshops and other academic activities;

v

v

Continue the formalization:
» SSRreflect;
» Code extraction and certified algorithms;
» Pushdown automata and other results of CFLs.

v

Keep learning Coq!

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 143 / 144

Conclusions

Computers and mathematics

v

Not easy, but very rewarding;

v

Hope you have enjoyed;

v

Ask me if you want references;

v

Write me if you have questions or suggestions;

v

Let me know you if plan to work in this area.

Thank youl

Marcus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 144 / 144

	Introduction
	Formal Mathematics
	Proof Assistants
	Coq
	Formalization Projects
	Context-Free Language Theory
	General Picture
	Basic Definitions
	Closure Properties
	Grammar Simplification
	Chomsky Normal Form
	Pumping Lemma
	Conclusions

