
Formalization of Context-Free Language Theory

Marus Viníius Midena Ramos

(PhD student - UFPE, Reife, Brazil)

Ruy J. G. B. de Queiroz (Advisor - UFPE, Reife, Brazil)

Nelma Moreira (Supervisor - UP, Porto, Portugal)

José Carlos Baelar Almeida (Supervisor - UM, Braga, Portugal)

Universidade do Porto

Departamento de Ciênia de Computadores, Fauldade de Ciênias

Porto, Portugal

July 10th, 2015

mvmr�in.ufpe.br

(12 de setembro de 2015, 10:50)

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 1 / 144

Introdution

Pro�le

◮
Eletronis Engineering at Universidade de São Paulo in 1982;

◮
M.S. in Digital Systems at Universidade de São Paulo in 1991;

◮
Teahing experiene with programming languages, ompilers, formal

languages, automata theory and omputation theory sine 1991;

◮
Professional experiene from 1983 to 1999 (software development,

produt management, marketing, retail, franhising, human resoures,

IT management);

◮
Current position at UNIVASF (Universidade Federal do Vale do São

Franiso) in Petrolina-PE/Juazeiro-BA sine April/2008;

◮
PhD student at UFPE (Universidade Federal de Pernambuo) sine

February/2011;

◮
Full dediation sine July/2013.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 2 / 144

Introdution

Loation

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 3 / 144

Introdution

Loation

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 4 / 144

Introdution

So...

◮
Formalization?

◮
Context-Free Language Theory?

◮
Why?

◮
How?

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 5 / 144

Introdution

Sope

The objetive of this work is to formalize a substantial part of ontext-free

language theory in the Coq proof assistant, making it possible to reason

about it in a fully heked environment, with all the related advantages.

◮
Formalization is the proess of writing proofs suh that they have a

preise meaning over a simple and well-de�ned alulus whose rules

an be automatially heked by a mahine;

◮
Context-free language theory is fundamental in the representation and

study of arti�ial languages, speially programming languages, and in

the onstrution of their proessors (ompilers and interpreters);

◮
The formalization of ontext-free language theory is a key to the

erti�ation of ompilers and programs, as well as to the development

of new languages and tools for erti�ed programming.

More on the next slides.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 6 / 144

Introdution

Summary

1

Introdution

2

Formal Mathematis

3

Proof Assistants

4

Coq

5

Formalization Projets

6

Context-Free Language Theory

7

General Piture

8

Basi De�nitions

9

Closure Properties

10

Grammar Simpli�ation

11

Chomsky Normal Form

12

Pumping Lemma

13

Conlusions

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 7 / 144

Formal Mathematis

General Piture

◮
�Informal� mathematis:

◮
Levels of abstration may hide errors di�ult to trae;

◮
Non-uniform notation is also a problem.

◮
Formalization (�omputer enoded mathematis�) is a lear trend

towards theoretial development and theory representation;

◮
Computer-aided reasoning and use of proof assistants (interative

theorem provers);

◮
Mehanized heking of proofs (and programs), enabling:

◮
Cheking of every reasoning step against the inferene rules of the

underlying logi;

◮
Uniform notation.

◮
Advantages:

◮
Less e�ort and time;

◮
Improved reliability.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 8 / 144

Formal Mathematis

Software Development

◮
Theorem proofs:

◮
Informal;

◮
Di�ult to build;

◮
Di�ult to hek.

◮
Computer programs:

◮
Informal;

◮
Di�ult to build;

◮
Di�ult to test.

◮
Coinidene?

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 9 / 144

Formal Mathematis

Software Development

◮
NOT REALLY, as theorem proving and software development have

essentially the same nature;

◮
Aording to the Curry-Howard Isomorphism, to develop a program is

the same as to prove a theorem, and vie-versa;

◮
Exploring this similarity his an be bene�ial to both ativities:

◮
Reasoning an be brought into programming, and

◮
Computational ideas an be used in theorem proving.

◮
How to improve both then?

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 10 / 144

Formal Mathematis

Perspetives

◮
Formalization (�omputer enoded mathematis�) is the answer;

◮
Computer-aided reasoning;

◮
Use of proof assistants, also known as interative theorem provers.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 11 / 144

Formal Mathematis

Bakground

Required before starting to use Coq:

◮
Natural Dedution;

◮
Untyped Lambda Calulus;

◮
Typed Lambda Calulus;

◮
Curry-Howard Isomorphism;

◮
Type Theory;

◮
Construtivism and BHK;

◮
Martin Löf's Intuitionisti Type Theory;

◮
Calulus of Construtions with Indutive De�nitions.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 12 / 144

Formal Mathematis

Bakground

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 13 / 144

Formal Mathematis

Natural Dedution

◮
Calulus for theorem proving;

◮
Part of Proof Theory;

◮
Based in simple inferene rules that resemble the rules of natural

thinking;

◮
Eah onnetive is assoiated to introdution and elimination rules;

◮
The proof of a theorem (proposition) is a strutured sequene of

inferene rules that validate the onlusion, usually without depending

on any hypothesis;

◮
The proof is represented as a tree;

◮
Gentzen (1935) and Prawitz (1965);

◮
Originally developed for propositional logi, was later extended for

prediate logi.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 14 / 144

Formal Mathematis

Untyped Lambda Calulus

Formal system used for the representation of omputations.

◮
Based on the de�nition and appliation of funtions;

◮
Funtions are treated as higher-order objets, as they an be passed as

arguments and returned as values from other funtions;

◮
Simpliity: only two onstruts (�ommands�);

◮
Allows the ombination of basi funtions in the reation of more

omplex funtions;

◮
Even in the pure version (without onstants), allows the representation

of a broad range of datatypes, inluding booleans, natural numbers,

integers et, and operations on their values.

◮
Untyped and typed versions.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 15 / 144

Formal Mathematis

Untyped Lambda Calulus

◮
Alonzo Churh, 1903-1995, United States;

◮
Invented the Lambda Calulus in the 1930s;

◮
Result of his investigations about the foundations of mathematis;

◮
Intended to formalize mathematis through the notion of funtions,

instead of the notion of sets;

◮
Although he did not sueed in this objetive, his work was of great

importante in other areas, speially in omputer siene.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 16 / 144

Formal Mathematis

Untyped Lambda Calulus

Mathematial model for:

◮
Theory, spei�ation and implementation of programming languages,

speially the funtional ones.

◮
Program veri�ation;

◮
Representation of omputable funtions;

◮
Computability theory;

◮
Proof theory.

Was used in the demonstration of the undeidability of various problems,

even before the mahine-based formalisms (e.g. Turing Mahine).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 17 / 144

Formal Mathematis

Typed Lambda Calulus

◮
Created by Churh to avoid the inonsistenies of the untyped version;

◮
Type tags are assoiated to lambda terms;

◮
Variables have base types (x : σ);

◮
Abstrations and appliations reate new types aordingly;

◮
Types must math;

◮
Less powerful model of omputation;

◮
Type systems for programming languages;

◮
Equality of terms is deidable;

◮
Strongly normalizing (all omputations terminate);

◮ (λx.xx)(λx.xx) and (λx.xxy)(λx.xxy) are not terms of the typed

lambda alulus.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 18 / 144

Formal Mathematis

Curry-Howard Isomorphism

Mathematis is all about:

◮
Reasoning;

◮
Computing.

For long time onsidered as separate areas; even today, ignored by many.

Any relation there?

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 19 / 144

Formal Mathematis

Curry-Howard Isomorphism

YES, aording to the Curry-Howard Isomorphism.

◮
There is a diret relationship between reasoning (as expressed by

�rst-order logi and natural dedution) and omputing (as expressed

by the typed lambda alulus);

◮
Proofs-as-programs or Propositions-as-types notions;

◮
First observed by (Haskell) Curry in 1934, later developed and

extended by Curry in 1958 and William Howard in 1969;

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 20 / 144

Formal Mathematis

Curry-Howard Isomorphism

◮
This has many important onsequenes as is the basis of modern

software development and omputer assisted theorem proo�ng:

◮
Reasoning priniples and tehniques an be brought into software

development;

◮
Computing (idem) an be used in theorem proving.

◮
In the simply typed lambda alulus, the funtion operator (→)

orresponds to the impliation onnetive (⇒); orrespondenes also

exist for other operators.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 21 / 144

Formal Mathematis

Curry-Howard Isomorphism

General piture:

Proofs Theorems

Programs Types

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 22 / 144

Formal Mathematis

Curry-Howard Isomorphism

Proofs & Theorems

First of all:

Proofs ⇔ Theorems

Programs Types

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 23 / 144

Formal Mathematis

Proofs & Theorems

Example

Proof:

a⇒ (b⇒ c) a
(⇒ E)

b⇒ c b
(⇒ E)c

(⇒ I)a⇒ c
(⇒ I)

b⇒ (a⇒ c)
(⇒ I)

(a⇒ (b⇒ c))⇒ (b⇒ (a⇒ c))

Theorem:

(a⇒ (b⇒ c))⇒ (b⇒ (a⇒ c))

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 24 / 144

Formal Mathematis

Curry-Howard Isomorphism

Programs & Types

Also:

Proofs Theorems

Programs ⇔ Types

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 25 / 144

Formal Mathematis

Programs & Types

Example

Program:

x : a→ (b→ c) z : a
(→ E)

xz : b→ c y : b
(→ E)xzy : c

(→ I)
λza.xzy : (a→ c)

(→ I)
λyb.λza.xzy : (b→ (a→ c))

(→ I)

λxa→(b→c).λyb.λza.xzy : (a→ (b→ c))→ (b→ (a→ c))

Type:

(a→ (b→ c))→ (b→ (a→ c))

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 26 / 144

Formal Mathematis

Curry-Howard Isomorphism

Theorems & Types

Next, it is easy to observe that:

Proofs

Theorems

m

Programs

Types

Types (spei�ations) and Theorems (propositions) share the same

syntati struture.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 27 / 144

Formal Mathematis

Theorems & Types

Example

Type or theorem?

Type:

(a→ (b→ c))→ (b→ (a→ c))

Theorem:

(a⇒ (b⇒ c))⇒ (b⇒ (a⇒ c))

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 28 / 144

Formal Mathematis

Curry-Howard Isomorphism

The Isomorphism

Logi Typed lambda alulus

⇒ (impliation) → (funtion type)

∧ (and) × (produt type)

∨ (or) + (sum type)

∀ (forall) Π (pi type)

∃ (exists) Σ (sigma type)

⊤ unit type

⊥ bottom type

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 29 / 144

Formal Mathematis

Curry-Howard Isomorphism

Proofs & Programs

Finally, the isomorphism extends to:

Proofs

Theorems

m
Programs

Types

One an be obtained diretly from the other:

◮
From Proof to Program: by adding the terms with the orresponding

types;

◮
From Program to Proof: by eliminating the terms and keeping only

the types.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 30 / 144

Formal Mathematis

Proofs & Programs

Example

Proof:

a ⇒ (b ⇒ c) a
(⇒ E)

b ⇒ c b
(⇒ E)c

(⇒ I)a ⇒ c
(⇒ I)

b ⇒ (a ⇒ c)
(⇒ I)

(a ⇒ (b ⇒ c)) ⇒ (b ⇒ (a ⇒ c))

Program:

x : a → (b → c) z : a
(→ E)

xz : b → c y : b
(→ E)

xzy : c
(→ I)

λza.xzy : (a → c)
(→ I)

λyb.λza.xzy : (b → (a → c))
(→ I)

λxa→(b→c).λyb.λza.xzy : (a → (b → c)) → (b → (a → c))

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 31 / 144

Formal Mathematis

Curry-Howard Isomorphism

Consequenes

◮
To build a program that satis�es a spei�ation (type):

◮
Interpret the spei�ation as a theorem (proposition);

◮
Build a proof tree for this theorem;

◮
Add terms with the orresponding types.

◮
To build a proof of a theorem:

◮
Interpret the theorem as a spei�ation;

◮
Build a program that meets the spei�ation;

◮
Remove the terms from the derivation tree.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 32 / 144

Formal Mathematis

Curry-Howard Isomorphism

Consequenes

Summary:

◮
To build a program is the same as to build a proof;

◮
To build a proof is the same as to build a program;

◮
To verify a program is the same as to verify a proof;

◮
Both veri�ations an be done via simple and e�ient type heking

algorithms.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 33 / 144

Formal Mathematis

Type Theory

A Type Theory is a theory that allows one to assign types to variables and

onstrut omplex type expressions. Then, lambda expressions an be

derived to meet a ertain type, or the type of an existing expression an be

obained by following the theory's inferene rules.

◮
Originally developed by Bertrand Russell in the 1910s as a tentative of

�xing the paradoxes of set theory (�is the set omposed of all sets that

are not members of themselves a member of itself?�);

◮
The Simply Typed Lambda Calulus is a type theory with a single

operator (→) and was developed by Churh in the 1940s as a

tentative of �xing the inonsistenies of the untyped lambda alulus;

◮
Sine then it has been extended with many new operators;

◮
Various di�erent type theories exist nowadays;

◮
Martin Löf's Intuitionisti Type Theory is one of the most important.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 34 / 144

Formal Mathematis

Construtivism and BHK

◮
Every true proposition must be aompanied by a proof of the validity

of the statement; the proof must explain how to build the objet that

validates the argument (proposition);

◮
Proposed by Brouwer, Heyting and Kolgomorov, the BHK

interpretation leaves behind the idea of the truth values of Tarski;

◮ x : σ is interpreted as x is a proof of σ;

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 35 / 144

Formal Mathematis

Construtivism and BHK

A proof of...

◮ a⇒ b is a mapping that reates a proof of b from a proof of a

(funtion);

◮ a ∧ b is a proof of a together with a proof of b (pair);

◮ a ∨ b is a proof of a or a proof of b together with an indiation of the

soure (pair);

◮ ∀x : A.P (x) is a mapping that reates a proof of P (t) for every t in A

(funtion);

◮ ∃x : A.P (x) is an objet t in A together with a proof of P (t) (pair).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 36 / 144

Formal Mathematis

Construtivism and BHK

◮
Construtivism does not use the Law of the Exluded Middle (p ∨ ¬p)
or any of its equivalents, that belong to lassi logi only:

◮
Double negation ¬(¬p)⇒ p;

◮
Proof by ontradition (¬a⇒ b) ∧ (¬a⇒ ¬b)⇒ a;

◮
Peire's Law ((p⇒ q)⇒ p)⇒ p.

◮
A onstrutive proof is said to have omputational ontent, as it is

possible to �onstrut� the objet that validates the proposition (the

proof is a reipe for building this objet);

◮
A onstrutive proof enables (omputer) ode extration from proofs,

thus the interest for it in omputer siene.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 37 / 144

Formal Mathematis

Construtivism

Aording to Troelstra:

�... the insistene that mathematial objets are to be onstruted

(mental onstrutions) or omputed; thus theorems asserting the

existene of ertain objets should by their proofs give us the

means of onstruting objets whose existene is being asserted.�

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 38 / 144

Formal Mathematis

Martin Löf's Intuitionisti Type Theory

A onstrutive type teory based on:

1

First-order logi to represent types and propositions;

2

Typed lambda alulus to represent programs and theorems.

and strutured around the Curry-Howard Isomorphism.

◮
It is a powerful theory for sotware development and interative

theorem proving;

◮
Also used as a theory for the foundations of mathematis.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 39 / 144

Formal Mathematis

Calulus of Construtions with Indutive De�nitions

A rihly typed lambda alulus extended with indutive de�nitions.

◮
Calulus of Construtions developed by Thierry Coquand;

◮
Construtive type theory;

◮
Later extended with indutive de�nitions;

◮
Used as the mathematial language of the Coq proof assistant

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 40 / 144

Formal Mathematis

Calulus of Construtions

◮
All logial operators (→,∧,∨,¬ and ∃) are de�ned in terms of the

universal quanti�er (∀), using �dependent types�;

◮
Types and programs (terms) have the same syntatial struture;

◮
Types have a type themselves (alled �Sort�);

◮
Base sorts are �Prop� (the type of propositions) and �Set� (the type

of small sets);

◮ Prop : Type(1), Set : Type(1), Type(i) : Type(i+ 1), i ≥ 1;

◮ S = {Prop, Set, Type(i) | i ≥ 1} is the set of sorts;

◮
Various datatypes an be de�ned (naturals, booleans et);

◮
Set of typing and onversion rules.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 41 / 144

Formal Mathematis

Indutive De�nitions

Finite de�nition of in�nite sets.

◮
�Construtors� de�ne the elements of a set;

◮
Construtors an be base elements of the set;

◮
Construtors an be a funtions that takes set elements and return

new set elements.

◮
Manipulation is done via �pattern mathing� over the indutive

de�nitions.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 42 / 144

Formal Mathematis

Indutive De�nitions

Booleans

{false,true}

Indutive boolean:

| false: boolean

| true: boolean.

Variable x: boolean.

Definition f: boolean:= false.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 43 / 144

Formal Mathematis

Indutive De�nitions

Naturals

{0, 1, 2, 3, ...} = {O, SO, SSO, SSSO, ...}

Indutive nat:=

| O: nat

| S: nat->nat.

Variable y: nat.

Definition zero: nat:= O.

Definition one: nat:= S O.

Definition two: nat:= S one.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 44 / 144

Formal Mathematis

Indutive De�nitions

String sets

Indutive ss:=

| ss_empty: ss

| ss_item: string->ss

| ss_build: string->ss->ss.

Variable z: ss.

Definition ss0: ss:= ss_empty.

Definition ss1: ss:= ss_item "ab".

Definition ss2: ss:= ss_build "def" (ss_item "ab").

Definition ss3: ss:= ss_build "ghi" (

ss_build "def" (ss_item "ab")).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 45 / 144

Formal Mathematis

Indutive De�nitions

Pattern mathing

Booleans:

Definition negb (x: bool): bool:=

math x with

| false => true

| true => false

end.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 46 / 144

Formal Mathematis

Indutive De�nitions

Pattern mathing

Naturals:

Definition sub (n: nat): nat :=

math n with

| O => O

| S m => m

end.

Fixpoint nat_equal (n1 n2: nat): bool :=

math n1, n2 with

| O, O => true

| S m, S n => nat_equal m n

| O, S n => false

| S m, O => false

end.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 47 / 144

Proof Assistants

Charateristis

◮
Software tools that assist the user in theorem proving and program

development;

◮
First initiative dates from 1967 (Automath, De Bruijn);

◮
Many provers are available today (Coq, Agda, Mizar, HOL, Isabelle,

Matita, Nuprl...);

◮
Interative;

◮
Graphial interfae;

◮
Proof/program heking;

◮
Proof/program onstrution.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 48 / 144

Proof Assistants

Usage

1

The user writes a statement (proposition) or a type expression

(spei�ation) in the language of the underlying logi;

2

He onstruts (diretly or indiretly):

◮
A proof of the theorem;

◮
A program (term) that omplies to the spei�ation.

3

Diretly: the proof/term is written in the formal language aepted by

the assistant;

4

Indiretly: the proof/term is built with the assistane of an interative

�tatis� language:

5

In either ase, the assistant heks that the proof/term omplies to

the theorem/spei�ation.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 49 / 144

Proof Assistants

Chek and/or onstrut

◮
Proof assistants hek that proofs/terms are orretly onstruted;

◮
This is done via simple type-heking algorithms;

◮
Automated proof/term onstrution might exist is some ases, to

some extent, but this is not the main fous;

◮
Thus the name �proof assistant�;

◮
Automated theorem proo�ng might be pursued, due to �proof

irrelevane�;

◮
Automated program development, on the other hand, is unrealisti.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 50 / 144

Proof Assistants

Main bene�ts

◮
Proofs and programs an be mehanially heked, saving time and

e�ort and inreasing reliability;

◮
Cheking is e�ient;

◮
Results an be easily stored and retrieved for use in di�erent ontexts;

◮
Tatis help the user to onstrut proofs/programs;

◮
User gets deeper insight into the nature of his proofs/programs,

allowing further improvement.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 51 / 144

Proof Assistants

Appliations

◮
Formalization and veri�ation of theorems and whole theories;

◮
Veri�ation of omputer programs;

◮
Corret software development;

◮
Automati review of large and omplex proofs submitted to journals;

◮
Veri�ation of hardware and software omponents.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 52 / 144

Proof Assistants

Drawbaks

◮
Failures in infrastruture may derease on�dene in the results (proof

assistant ode, language proessors, operating system, hardware et);

◮
Size of formal proofs;

◮
Redued numer of people using proof assistants;

◮
Slowly inreasing learning urve;

◮
Resemblane of omputer ode keeps pure mathematiians

uninterested.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 53 / 144

Coq

Overview

◮
Developed by Huet/Coquand at INRIA in 1984;

◮
First version released in 1989, indutive types were added in 1991;

◮
Continuous development and inreasing usage sine then;

◮
The underlying logi is the Calulus of Construtions with Indutive

De�nitions;

◮
It is implemented by a typed funtional programming with a higher

order logi language alled Gallina;

◮
Interation with the user is via a ommand language alled Vernaular;

◮
Construtive logi with large standard library and user ontributions

base;

◮
Extensible environment;

◮
All resoures freely available from http://oq.inria.fr/.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 54 / 144

http://coq.inria.fr/

Coq

User session

The proof an be onstruted diretly ou indiretly.

In the indiret ase,

◮
The initial goal is the theorem/spei�ation supplied by the user;

◮
The environment and the ontext are initially empty;

◮
The appliation of a �tatis� substitutes the urrent goal for zero ou

more subgoals;

◮
The ontext hanges and might inorporate new hypotheses;

◮
The proess is repeated for eah subgoal, until no subgoal remains;

◮
The proof/term is onstruted from the sequene of tatis used.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 55 / 144

Coq

Tatis usage

◮
Inferene rules map premises to onlusions;

◮
Forward reasoning is the proess of moving from premises to

onlusions;

◮
Example: from a proof of a and a proof of b one an prove a ∧ b;

◮
Bakward reasoning is the proess of moving from onlusions to

premises;

◮
Example: to prove a ∧ b one has to prove a and also prove b;

◮
Coq uses bakward reasoning;

◮
They are implemented by �tatis�;

◮
A tati redues a goal to its subgoals, if any, or simply proves the

goal.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 56 / 144

Coq

Certi�ed software development

1

Write the spei�ations as type expressions;

2

Interpret them as theorems;

3

Build the proofs;

4

Let the proof assistant hek them;

5

Convert them to omputer programs using the ode extration faility.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 57 / 144

Formalization Projets

Introdution

◮
Great and inreasing interest in formal proof and program

development over the reent years;

◮
Main areas inlude:

◮
Programming language semantis formalization;

◮
Mathematis formalization;

◮
Eduation.

◮
Important projets in both aademy and industry;

◮
Top 100 theorems (91% formalized as of July/2015);

◮
Chek http://www.s.ru.nl/~freek/100/;

◮
One way road.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 58 / 144

http://www.cs.ru.nl/~freek/100/

Formalization Projets

Four Color Theorem

◮
Stated in 1852, proved in 1976 and again in 1995;

◮
The two proofs used omputers to a some extent, but were not fully

mehanized;

◮
In 2005, Georges Gonthier (Mirosoft Researh) and Benjamin Werner

(INRIA) produed a proof sript that was fully heked by a mahine;

◮
Milestone in the history of omputer assisted proo�ng;

◮
60,000 lines of Coq sript and 2,500 lemmas;

◮
Byproduts.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 59 / 144

Formalization Projets

Four Color Theorem

�Although this work is purportedly about using omputer

programming to help doing mathematis, we expet that most of

its fallout will be in the reverse diretion using mathematis to

help programming omputers.�

Georges Gonthier

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 60 / 144

Formalization Projets

Odd Order Theorem

◮
Also known as the Feit-Thomson Theorem;

◮
Important to mathematis (in the lassi�ation of �nite groups) and

ryptography;

◮
Conjetured in 1911, proved in 1963;

◮
Formally proved by a team led by Georges Gonthier in 2012;

◮
Six years with full-time dediation;

◮
Huge ahievement in the history of omputer assisted proo�ng;

◮
150,000 lines of Coq sript and 13,000 theorems;

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 61 / 144

Formalization Projets

Compiler Certi�ation

◮
CompCert, a fully veri�ed ompiler for a large subset of C that

generates PowerPC ode;

◮
Objet ode is erti�ed to omply with the soure ode in all ases;

◮
Appliations in avionis and ritial software systems;

◮
Not only heked, but also developed in Coq;

◮
Three persons-years over a �ve yers period;

◮
42,000 lines of Coq ode.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 62 / 144

Formalization Projets

Mirokernel Certi�ation

◮
Critial omponent of operating systems, runs in privileged mode;

◮
Harder to test in all situations;

◮
seL4, written in C (10,000 lines), was fully heked in HOL/Isabelle;

◮
No rash, no exeution of any unsafe operation in any situation;

◮
Proof is 200,000 lines long;

◮
11 persons-years, an go down to 8, 100% overhead over a

non-erti�ed projet.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 63 / 144

Formalization Projets

Digital Seurity Certi�ation

◮
JavaCard smart ard platform;

◮
Personal data suh as banking, redit ard, health et;

◮
Multiple appliations by di�erent ompanies;

◮
Con�dene and integrity must be assured;

◮
Formalization of the behaviour and the properties of its omponents;

◮
Complete erti�ation, highest level ahieved;

◮
INRIA, Shlumberger and Gemalto.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 64 / 144

Context-Free Language Theory

Overview

◮
Part of Formal Language Theory (Chomsky Hierarhy):

◮
Regular Languages;

◮
Context-Free Languages;

◮
Context-Sensitive Languages;

◮
Reursively Enumerable Languages.

◮
Developed from mid 1950s to late 1970s;

◮
Relevant to the representation, study and implementation of arti�ial

languages;

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 65 / 144

Context-Free Language Theory

Overview

Inludes:

◮
Context-free grammars, pushdown automata and notations (e.g.

BNF);

◮
Equivalene of grammars and automata;

◮
Grammar simpli�ation;

◮
Normal forms;

◮
Derivation trees, parsing and ambiguity;

◮
Determinism and non-determinism;

◮
Closure properties;

◮
Deidable and undeidable problems;

◮
Relation with other language lasses.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 66 / 144

General Piture

Origins

◮
Experiene in teahing language and automata theory;

◮
Book Linguagens Formais published in 2009 (with J.J. Neto and I.S.

Vega);

◮
Algorithms were used instead of demonstrations for most theorems;

◮
Interest in formalization after studying logi, lambda alulus, type

theory and Coq;

◮
Desire to follow the lines of the book and formalize its ontents;

◮
Related work:

◮
Regular languages have already been formalized to a large extend;

◮
Some formalization of ontext-free languages appeared in reent years,

mostly in HOL4 and Agda.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 67 / 144

General Piture

Objetives

To formally state and prove the following fundamental results on

ontext-free language theory:

1

Closure properties:

◮
Union;

◮
Conatenation;

◮
Kleene star.

2

Grammar simpli�ation:

◮
Elimination of empty rules;

◮
Elimination of unit;

◮
Elimination of useless symbols;

◮
Elimination of inaessible symbols.

3

Chomsky Normal Form;

4

Pumping Lemma.

Six main theorems.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 68 / 144

General Piture

Current Status

◮
600+ lemmas and theorems, 20+ libraries, 25.000+ lines of sripts;

◮
2 year e�ort;

◮
Representation of all relevant objets of the universe of disourse using

indutive de�nitions for types and propositions:

◮
Terminal and non-terminal symbol sets;

◮
Sentene and sentential forms;

◮
Rules;

◮
Context-free grammars;

◮
Derivations;

◮
Trees.

◮
Delarative style;

◮
Closer to textbook de�nitions;

◮
More abstrat to deal with;

◮
Does not allow for the extration of erti�ed programs.

◮
Currently �nishing the formalization of the Pumping Lemma.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 69 / 144

Basi De�nitions

Context-Free Grammar

G = (V,Σ, P, S), where:

◮ V is the voabulary of G;

◮ Σ is the set of terminal symbols;

◮ N = V \ Σ is the set of non-terminal symbols;

◮ P is the set of rules α→ β, with α ∈ N and β ∈ V ∗
;

◮ S ∈ N is the start symbol.

Reord fg (non_terminal terminal : Type): Type:= {

start_symbol: non_terminal;

rules: non_terminal→ sf → Prop;

rules_finite:

∃ n: nat,

∃ ntl: nlist,
∃ tl: tlist,
rules_finite_def start_symbol rules n ntl tl }.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 70 / 144

Basi De�nitions

Context-Free Grammar

Making sure that fg represents a ontext-free grammar:

◮
General types might have an in�nite number of elements;

◮
We must hek that the rules of the grammar are built from �nite sets

of terminal and non-terminal symbols;

◮
We must also hek that the set of rules is �nite;

◮
The prediate rules_finite_def is used to make sure that these

onditions are satis�ed for every grammar in the formalization, either

user-de�ned or onstruted;

◮
A list of non-terminal symbols (ntl), a list of terminal symbols (tl)

and an upper bound on the length of the right-hand side of the rules

(n) must be supplied.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 71 / 144

Basi De�nitions

Example

G = ({S′, A,B, a, b}, {a, b}, {S′ → aS′, S′ → b}, S′) generates the
language a∗b.

Indutive nt1: Type:= | S' | A | B.

Indutive t1: Type:= | a | b.

Indutive rs1: nt1 → list (nt1 + t1) → Prop:=

r1: rs1 S' [inr a; inl S'℄

| r2: rs1 S' [inr b℄.

Definition g1: fg nt1 t1:= {|

start_symbol:= S';

rules:= rs1;

rules_finite:= rs1_finite |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 72 / 144

Basi De�nitions

Derivation

Substitution proess:

s1 derives s2 by appliation of zero or more rules: s1 ⇒∗ s2.

Indutive derives

(non_terminal terminal : Type)

(g : fg non_terminal terminal)

: sf → sf → Prop :=

| derives_refl :

∀ s : sf,

derives g s s

| derives_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 73 / 144

Basi De�nitions

Derivation

◮
Prediate generates: a derivation that begins with the start symbol

of the grammar;

◮
Prediate produes: a derivation that begins with the start symbol of

the grammar and ends with a sentene.

S ⇒ α1 ⇒
derives

︷ ︸︸ ︷

α2 ⇒ ...⇒ αn−1
︸ ︷︷ ︸

generates

⇒ αn ⇒ ω

︸ ︷︷ ︸

produes

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 74 / 144

Basi De�nitions

Example

S ⇒ aS ⇒ aaS ⇒ aab

Lemma produes_g1_aab:

produes g1 [a; a; b℄.

Proof.

unfold produes.

unfold generates.

simpl.

apply derives_step with (s2:=[inr a; inr a℄)(left:=S')(right:=[inr b℄).

apply derives_step with (s2:=[inr a℄)(left:=S')(right:=[inr a;inl S'℄).

apply derives_start with (left:=S')(right:=[inr a;inl S'℄).

apply r11.

apply r11.

apply r12.

Qed.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 75 / 144

Basi De�nitions

Grammar Equivalene

g1 ≡ g2
if they generate the same language, that is,

∀s, (S1 ⇒∗

g1
s)↔ (S2 ⇒∗

g2
s)

Definition g_equiv

(non_terminal1 non_terminal2 terminal : Type)

(g1: fg non_terminal1 terminal)

(g2: fg non_terminal2 terminal): Prop:=

∀ s: sentene,

produes g1 s ↔ produes g2 s.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 76 / 144

Basi De�nitions

Context-Free Language

◮
A language is a set of strings over a given alphabet;

◮
A ontext-free language is a language that is generated by some

ontext-free grammar: L(G) = {w |S ⇒∗

g w}.

Definition lang (terminal: Type):= sentene→ Prop.

Definition lang_of_g (g: fg): lang :=

fun w: sentene⇒ produes g w.

Definition lang_eq (l k: lang) :=

∀ w, l w ↔ k w.

Definition fl (terminal: Type) (l: lang terminal): Prop:=

∃ non_terminal: Type,
∃ g: fg non_terminal terminal,

lang_eq l (lang_of_g g).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 77 / 144

Basi De�nitions

Generi CFG Library

General purpose lemmas:

◮ ∀g, s1, s2, s3, (s1 ⇒∗

g s2)→ (s2 ⇒∗

g s3)→ (s1 ⇒∗

g s3)

◮ ∀g, s1, s2, s, s′, (s1 ⇒∗

g s2)→ (s · s1 · s′ ⇒∗

g s · s2 · s
′)

◮ ∀g, s1, s2, s3, s4, (s1 ⇒∗

g s2)→ (s3 ⇒∗

g s4)→ (s1 · s3 ⇒∗

g s2 · s4)

◮ ∀g, s1, s2, s3, (s1 · s2 ⇒∗

g s3)→ ∃s
′

1, s
′

2 | (s3 = s′1 · s
′

2) ∧ (s1 ⇒∗

g

s′1) ∧ (s2 ⇒∗

g s
′

2)

◮ ∀g, s1, s2, n, w, (s1 · n · s2 ⇒∗

g w)→ ∃w
′ | (n⇒∗

g w′)

◮ ∀g, n,w, (n⇒∗

g w)→ (n→g w)∨(∃right |n→g right∧right⇒∗

g w)

◮ ∀g1, g2, g3, (g1 ≡ g2) ∧ (g2 ≡ g3)→ (g1 ≡ g3)

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 78 / 144

Basi De�nitions

Methodology

For losure properties, grammar simpli�ation and Chomsky normal form:

1

Indutively de�ne the new non-terminal symbols (if neessary);

2

Indutively de�ne the rules of the new grammar;

3

De�ne the new grammar;

4

Show that the new grammar has the desired properties;

5

Consolidate the results.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 79 / 144

Closure Properties

Overview

Context-free languages are losed under union, onatenation and

Kleene star.

◮
De�ne union, onatenation and Kleene star operations;

◮
Prove that the resulting languages are ontext-free;

◮
Prove that the resulting languages ontain exatly the expeted

strings.

First with grammars, then with languages.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 80 / 144

Closure Properties

Union

De�nitions

Construt g3 suh that L(g3) = L(g1) ∪ L(g2):

Indutive g_uni_nt (non_terminal_1 non_terminal_2 : Type): Type:=

| Start_uni

| Transf1_uni_nt: non_terminal_1→ g_uni_nt

| Transf2_uni_nt: non_terminal_2→ g_uni_nt.

Definition g_uni

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: fg non_terminal_1 terminal)

(g2: fg non_terminal_2 terminal)

: (fg g_uni_nt terminal):=

{| start_symbol:= Start_uni;

rules:= g_uni_rules g1 g2;

rules_finite:= g_uni_finite g1 g2 |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 81 / 144

Closure Properties

Union

De�nitions

Indutive g_uni_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: fg non_terminal_1 terminal)

(g2: fg non_terminal_2 terminal)

: g_uni_nt→ sfu → Prop :=

| Start1_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf1_uni_nt (start_symbol g1))℄

| Start2_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf2_uni_nt (start_symbol g2))℄

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 82 / 144

Closure Properties

Union

De�nitions

| Lift1_uni:

∀ nt: non_terminal_1,
∀ s: sf1,

rules g1 nt s →
g_uni_rules g1 g2 (Transf1_uni_nt nt) (map g_uni_sf_lift1 s)

| Lift2_uni:

∀ nt: non_terminal_2,
∀ s: sf2,

rules g2 nt s →
g_uni_rules g1 g2 (Transf2_uni_nt nt) (map g_uni_sf_lift2 s).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 83 / 144

Closure Properties

Union

Corretness

∀g1, g2, s1, s2, (S1 ⇒∗

g1
s1 → S3 ⇒∗

g3
s1) ∧ (S2 ⇒∗

g2
s2 → S3 ⇒∗

g3
s2)

Theorem g_uni_orret:

∀ g1: fg non_terminal_1 terminal,

∀ g2: fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
(generates g1 s1 → generates (g_uni g1 g2) (map g_uni_sf_lift1 s1))

∧
(generates g2 s2 → generates (g_uni g1 g2) (map g_uni_sf_lift2 s2)).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 84 / 144

Closure Properties

Union

Completeness

∀s3, (S3 ⇒∗

g3
s3)→ (S1 ⇒∗

g1
s3) ∨ (S2 ⇒∗

g2
s3)

Theorem g_uni_orret_inv:

∀ g1: fg non_terminal_1 terminal,

∀ g2: fg non_terminal_2 terminal,

∀ s: sfu,

generates (g_uni g1 g2) s →
(s=[inl (start_symbol (g_uni g1 g2))℄) ∨
(∃ s1: sf1, (s=(map g_uni_sf_lift1 s1) ∧ generates g1 s1)) ∨
(∃ s2: sf2, (s=(map g_uni_sf_lift2 s2) ∧ generates g2 s2)).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 85 / 144

Closure Properties

Union

Proofs Outline

◮
The orretness proof is straightforward and was obtained diretly

from the de�nition of the orresponding grammars;

◮
The ompleteness proofs is more ompliated, and was onstruted by

indution on the indutive de�nition derives, with extensive ase

analysis;

◮
Equivalent statements were proved using ontext-free languages

instead of ontext-free grammars:

Indutive l_uni (l1 l2: lang terminal): lang terminal:=

| l_uni_l1: ∀ s: sentene, l1 s → l_uni l1 l2 s

| l_uni_l2: ∀ s: sentene, l2 s → l_uni l1 l2 s.

Theorem l_uni_is_fl:

∀ l1 l2: lang terminal, fl l1 → fl l2 → fl (l_uni l1 l2).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 86 / 144

Closure Properties

Conatenation

De�nitions

Construt g3 suh that L(g3) = L(g1) · L(g2):

Indutive g_at_nt (non_terminal_1 non_terminal_2 terminal : Type)

: Type:=

| Start_at

| Transf1_at_nt: non_terminal_1→ g_at_nt

| Transf2_at_nt: non_terminal_2→ g_at_nt.

Definition g_at

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: fg non_terminal_1 terminal)

(g2: fg non_terminal_2 terminal)

: (fg g_at_nt terminal):=

{| start_symbol:= Start_at;

rules:= g_at_rules g1 g2;

rules_finite:= g_at_finite g1 g2 |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 87 / 144

Closure Properties

Conatenation

De�nitions

Indutive g_at_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: fg non_terminal_1 terminal)

(g2: fg non_terminal_2 terminal)

: g_at_nt→ sf → Prop :=

| New_at:

g_at_rules g1 g2 Start_at

([inl (Transf1_at_nt (start_symbol g1))℄++

[inl (Transf2_at_nt (start_symbol g2))℄)

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 88 / 144

Closure Properties

Conatenation

De�nitions

| Lift1_at:

∀ nt s,

rules g1 nt s →
g_at_rules g1 g2 (Transf1_at_nt nt) (map g_at_sf_lift1 s)

| Lift2_at:

∀ nt s,

rules g2 nt s →
g_at_rules g1 g2 (Transf2_at_nt nt) (map g_at_sf_lift2 s).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 89 / 144

Closure Properties

Conatenation

Corretness

∀g1 g2, s1, s2, (S1 ⇒∗

g1
s1) ∧ (S2 ⇒∗

g2
s2)→ (S3 ⇒∗

g3
s1s2)

Theorem g_at_orret:

∀ g1: fg non_terminal_1 terminal,

∀ g2: fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
generates g1 s1 ∧ generates g2 s2 →
generates (g_at g1 g2) ((map g_at_sf_lift1 s1)++

(map g_at_sf_lift2 s2)).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 90 / 144

Closure Properties

Conatenation

Completeness

∀s3, (S3 ⇒∗

g3
s3)→ ∃s1, s2 | (s3 = s1 · s2) ∧ (S1 ⇒∗

g1
s1) ∧ (S2 ⇒∗

g2
s2)

Theorem g_at_orret_inv:

∀ g1: fg non_terminal_1 terminal,

∀ g2: fg non_terminal_2 terminal,

∀ s: sf,

generates (g_at g1 g2) s →
s = [inl (start_symbol (g_at g1 g2))℄ ∨
∃ s1: sf1,
∃ s2: sf2,
s =(map g_at_sf_lift1 s1)++(map g_at_sf_lift2 s2) ∧
generates g1 s1 ∧ generates g2 s2.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 91 / 144

Closure Properties

Conatenation

Proofs Outline

◮
Both the orretness and the ompleteness proofs are onstruted by

indution on the indutive de�nition derives, with extensive ase

analysis.

◮
Equivalent statements were proved using ontext-free languages

instead of ontext-free grammars:

Indutive l_at (l1 l2: lang terminal): lang terminal:=

| l_at_app: ∀ s1 s2: sentene,

l1 s1 → l2 s2 → l_at l1 l2 (s1 ++s2).

Theorem l_at_is_fl:

∀ l1 l2: lang terminal,

fl l1 → fl l2 → fl (l_at l1 l2).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 92 / 144

Closure Properties

Kleene Star

De�nitions

Construt g2 suh that L(g2) = (L(g1))
∗
:

Indutive g_lo_nt (non_terminal : Type): Type :=

| Start_lo : g_lo_nt

| Transf_lo_nt : non_terminal→ g_lo_nt.

Definition g_lo (g: fg non_terminal terminal):

(non_terminal terminal : Type)

(g: fg g_lo_nt terminal):=

{| start_symbol:= Start_lo;

rules:= g_lo_rules g;

rules_finite:= g_lo_finite g |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 93 / 144

Closure Properties

Kleene Star

De�nitions

Indutive g_lo_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: g_lo_nt→ sf → Prop :=

| New1_lo:

g_lo_rules g Start_lo ([inl Start_lo℄ ++

[inl (Transf_lo_nt (start_symbol g))℄)

| New2_lo:

g_lo_rules g Start_lo [℄

| Lift_lo:

∀ nt: non_terminal,
∀ s: sf,

rules g nt s →
g_lo_rules g (Transf_lo_nt nt) (map g_lo_sf_lift s).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 94 / 144

Closure Properties

Kleene Star

Corretness

∀g1, s1, s2, (S2 ⇒∗

g2
ǫ) ∧ ((S2 ⇒∗

g2
s2) ∧ (S1 ⇒∗

g1
s1)→ S2 ⇒∗

g2
s2 · s1)

Theorem g_lo_orret:

∀ g: fg non_terminal terminal,

∀ s: sf,

∀ s': sf,

generates (g_lo g) nil ∧
(generates (g_lo g) s' ∧ generates g s →
generates (g_lo g) (s'++ map g_lo_sf_lift s)).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 95 / 144

Closure Properties

Kleene Star

Completeness

∀s2, (S2 ⇒∗

g2
s2)→ (s2 = ǫ) ∨ (∃s1, s′2 | (s2 = s′2 · s1) ∧ (S2 ⇒∗

g2

s′2) ∧ (S1 ⇒∗

g1
s1))

Theorem g_lo_orret_inv:

∀ g: fg non_terminal terminal,

∀ s: sf,

generates (g_lo g) s →
(s=[℄) ∨
(s=[inl (start_symbol (g_lo g))℄) ∨
(∃ s': sf,

∃ s'': sf,

generates (g_lo g) s' ∧ generates g s'' ∧ s=s' ++map g_lo_sf_lift s'').

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 96 / 144

Closure Properties

Kleene Star

Proofs Outline

◮
The orretness proof is straightforward and are obtained diretly from

the de�nition of the orresponding grammars;

◮
The ompleteness proofs is more ompliated, and are onstruted by

indution on the indutive de�nition derives, with extensive ase

analysis.

◮
Equivalent statements were proved using ontext-free languages

instead of ontext-free grammars:

Indutive l_lo (l: lang terminal): lang terminal:=

| l_lo_nil: l_lo l [℄

| l_lo_app: ∀ s1 s2: sentene,

(l_lo l) s1 → l s2 → l_lo l (s1 ++s2).

Theorem l_lo_is_fl:

∀ l: lang terminal, fl l → fl (l_lo l).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 97 / 144

Grammar Simpli�ation

Overview

Grammar simpli�ation aims at obtaining new and simpler grammars that

are equivalent to the original ones:

◮
Simpler means:

◮
They ontain only symbols and rules that are e�etively used in the

derivation of some sentene;

◮
They do not ontain unit rules (e.g. A→ B);

◮
They do not ontain empty rules (e.g. A→ ǫ), exept for a speial

ase.

◮
Equivalent means that they generate the same language.

Important to redue the omplexity of grammars and thus (i) simplify its

understanding, inrease the e�ieny of parsers obtained from them and

(iii) allow their normalization.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 98 / 144

Grammar Simpli�ation

Elimination of empty rules

Conept

◮
An empty rule r ∈ P is a rule whose right-hand side β is empty (e.g.

X → ǫ);

◮
We formalize that for all G, there exists G′

suh that L(G) = L(G′)
and G′

has no empty rules, exept for a single rule S → ǫ if ǫ ∈ L(G);
in this ase, S (the initial symbol of G′

) does not appear on the

right-hand side of any rule in G′
.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 99 / 144

Grammar Simpli�ation

Elimination of empty rules

De�nitions

Definition empty

(g: fg terminal _) (s: non_terminal + terminal): Prop:=

derives g [s℄ [℄.

Indutive non_terminal': Type:=

| Lift_nt: non_terminal→ non_terminal'

| New_ss.

Definition g_emp

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal' terminal :=

{| start_symbol:= New_ss;

rules:= g_emp_rules g;

rules_finite:= g_emp_finite g |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 100 / 144

Grammar Simpli�ation

Elimination of empty rules

De�nitions

Indutive g_emp_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: non_terminal' → sf' → Prop :=

| Lift_diret :

∀ left: non_terminal,
∀ right: sf,
right 6= [℄ → rules g left right →
g_emp_rules g (Lift_nt left) (map symbol_lift right)

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 101 / 144

Grammar Simpli�ation

Elimination of empty rules

De�nitions

| Lift_indiret:

∀ left: non_terminal,
∀ right: sf,
g_emp_rules g (Lift_nt left) (map symbol_lift right)→
∀ s1 s2: sf,

∀ s: non_terminal,

right = s1 ++(inl s) :: s2 →
empty g (inl s) →
s1 ++s2 6= [℄ →
g_emp_rules g (Lift_nt left) (map symbol_lift (s1 ++s2))

| Lift_start_emp:

g_emp_rules g New_ss [inl (Lift_nt (start_symbol g))℄.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 102 / 144

Grammar Simpli�ation

Elimination of empty rules

Example

Suppose that X,A,B,C are non-terminals, of whih A,B and C are

nullable, a, b and c are terminals and X → aAbBcC is a rule of g. Then,

the above de�nitions assert that X → aAbBcC is a rule of g_emp g, and

also:

◮ X → aAbBc;

◮ X → abBcC;

◮ X → aAbcC;

◮ X → aAbc;

◮ X → abBc;

◮ X → abcC;

◮ X → abc.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 103 / 144

Grammar Simpli�ation

Elimination of empty rules

De�nitions

Definition g_emp'

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: fg (non_terminal' _) terminal :=

{| start_symbol:= New_ss _;

rules:= g_emp'_rules g;

rules_finite:= g_emp'_finite g |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 104 / 144

Grammar Simpli�ation

Elimination of empty rules

De�nitions

Indutive g_emp'_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: non_terminal' non_terminal→ sf' → Prop :=

| Lift_all:

∀ left: non_terminal' _,
∀ right: sf',
rules (g_emp g) left right → g_emp'_rules g left right

| Lift_empty:

empty g (inl (start_symbol g)) →
g_emp'_rules g (start_symbol (g_emp g)) [℄.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 105 / 144

Grammar Simpli�ation

Elimination of empty rules

Corretness

Theorem g_emp'_orret:

∀ g: fg non_terminal terminal,

g_equiv (g_emp' g) g ∧
(generates_empty g → has_one_empty_rule (g_emp' g)) ∧
(∼ generates_empty g → has_no_empty_rules (g_emp' g)) ∧
start_symbol_not_in_rhs (g_emp' g).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 106 / 144

Grammar Simpli�ation

Elimination of empty rules

Proof Outline

The de�nition of g_equiv, when applied to the previous theorem, yields:

∀ s: sentene,

produes (g_emp' g) s ↔ produes g s.

◮
For the → part, the strategy is to prove that for every rule

left→g_emp′ right, either left→g right is a rule of g or

left⇒∗

g right;

◮
For the ← part, the strategy is a more ompliated one, and involves

indution over the number of derivation steps in g.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 107 / 144

Grammar Simpli�ation

Elimination of unit rules

Conept

◮
A unit rule r ∈ P is a rule whose right-hand side β ontains a single

non-terminal symbol (e.g. X → Y);

◮
We formalize that for all G, there exists G′

suh that L(G) = L(G′)
and G′

has no unit rules.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 108 / 144

Grammar Simpli�ation

Elimination of unit rules

De�nitions

Indutive unit

(terminal non_terminal : Type)

(g: fg terminal non_terminal)

(a: non_terminal)

: non_terminal→ Prop:=

| unit_rule:

∀ (b: non_terminal),

rules g a [inl b℄ → unit g a b

| unit_trans:

∀ b : non_terminal,

unit g a b → unit g b → unit g a .

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 109 / 144

Grammar Simpli�ation

Elimination of unit rules

De�nitions

Definition g_unit

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_unit_rules g;

rules_finite:= g_unit_finite g |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 110 / 144

Grammar Simpli�ation

Elimination of unit rules

De�nitions

Indutive g_unit_rules

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_diret' :

∀ left: non_terminal,
∀ right: sf,
(∀ r: non_terminal, right 6= [inl r℄) →
rules g left right →
g_unit_rules g left right

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 111 / 144

Grammar Simpli�ation

Elimination of unit rules

De�nitions

| Lift_indiret':

∀ a b: non_terminal,

unit g a b →
∀ right: sf,
rules g b right →
(∀ : non_terminal, right 6= [inl ℄) →
g_unit_rules g a right.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 112 / 144

Grammar Simpli�ation

Elimination of unit rules

Example

Suppose that N = {S′,X, Y, Z}, Σ = {a, b, c} and
P = {S′ → X,X → aX,X → Y, Y → XbY, Y → Z,Z → c}. The
previous de�nitions assert that P ′

has the following rules:

◮ S′ → aX;

◮ S′ → XbY ;

◮ S′ → c;

◮ X → aX;

◮ X → XbY ;

◮ X → c;

◮ Y → XbY ;

◮ Y → c;

◮ Z → c

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 113 / 144

Grammar Simpli�ation

Elimination of unit rules

Corretness

Theorem g_unit_orret:

∀ g: fg non_terminal terminal,

g_equiv (g_unit g) g ∧ has_no_unit_rules (g_unit g).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 114 / 144

Grammar Simpli�ation

Elimination of unit rules

Proof Outline

Consider g_equiv (g_unit g) g of the previous statement:

◮
For the → part, the strategy adopted is to prove that for every rule

left→g_unit right of (g_unit g), either left→g right is a rule of g

or left⇒∗

g right;

◮
For the ← part, the strategy is also a more ompliated one, and

involves indution over a prediate that is equivalent to derives

(derives3), but generates the sentene diretly without onsidering the

appliation of a sequene of rules, whih allows one to abstrat the

appliation of unit rules in g.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 115 / 144

Grammar Simpli�ation

Elimination of useless symbols

Conept

◮
A symbol s ∈ V is useful if it is possible to derive a sentene from it

using the rules of the grammar. Otherwise, s is alled an useless

symbol;

◮
A useful symbol s is one suh that s⇒∗ ω, with ω ∈ Σ∗

;

◮
We formalize that, for all G suh that L(G) 6= ∅, there exists G′

suh

that L(G) = L(G′) and G′
has no useless symbols.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 116 / 144

Grammar Simpli�ation

Elimination of useless symbols

De�nitions

Definition useful

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

math s with

| inr t ⇒ True

| inl n ⇒ ∃ s: sentene, derives g [inl n℄ (map term_lift s)

end.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 117 / 144

Grammar Simpli�ation

Elimination of useless symbols

De�nitions

Definition g_use

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal terminal:=

{| start_symbol:= start_symbol g;

rules:= g_use_rules g;

rules_finite:= g_use_finite g |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 118 / 144

Grammar Simpli�ation

Elimination of useless symbols

De�nitions

Indutive g_use_rules

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_use :

∀ left: non_terminal,
∀ right: sf,
rules g left right →
useful g (inl left) →
(∀ s: non_terminal + terminal, In s right → useful g s) →
g_use_rules g left right.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 119 / 144

Grammar Simpli�ation

Elimination of useless symbols

Corretness

Theorem g_use_orret:

∀ g: fg non_terminal terminal,

non_empty g → g_equiv (g_use g) g ∧ has_no_useless_symbols (g_use g).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 120 / 144

Grammar Simpli�ation

Elimination of useless symbols

Proof Outline

Consider g_equiv (g_use g) g of the previous statement:

◮
The → part of the g_equiv proof is straightforward, sine every rule

of g_use is also a rule of g;

◮
For the onverse, it is neessary to show that every symbol used in a

derivation of g is useful, and thus all the rules used in this derivation

also appear in g_use.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 121 / 144

Grammar Simpli�ation

Elimination of inaessible symbols

Conept

◮
A symbol s ∈ V is aessible if it is part of at least one string

generated from the root symbol of the grammar. Otherwise, it is

alled an inaessible symbol;

◮
An aessible symbol s is one suh that S ⇒∗ αsβ, with α, β ∈ V ∗

;

◮
We formalize that for all G, there exists G′

suh that L(G) = L(G′)
and G′

has no inaessible symbols.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 122 / 144

Grammar Simpli�ation

Elimination of inaessible symbols

De�nitions

Definition aessible

(terminal non_terminal : Type)

(g : fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

∃ s1 s2: sf, derives g [inl (start_symbol g)℄ (s1 ++s :: s2).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 123 / 144

Grammar Simpli�ation

Elimination of inaessible symbols

De�nitions

Definition g_a

(terminal non_terminal : Type)

(g : fg non_terminal terminal)

: fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_a_rules g;

rules_finite:= g_a_finite g |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 124 / 144

Grammar Simpli�ation

Elimination of inaessible symbols

De�nitions

Indutive g_a_rules

(terminal non_terminal : Type)

(g : fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_a : ∀ left: non_terminal,
∀ right: sf,
rules g left right → aessible g (inl left) →
g_a_rules g left right.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 125 / 144

Grammar Simpli�ation

Elimination of inaessible symbols

Corretness

Theorem g_a_orret:

∀ g: fg non_terminal terminal,

g_equiv (g_a g) g ∧ has_no_inaessible_symbols (g_a g).

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 126 / 144

Grammar Simpli�ation

Elimination of inaessible symbols

Proof Outline

Consider g_equiv (g_a g) g of the previous statement:

◮
The → part of the g_equiv proof is also straightforward, sine every

rule of g_a is also a rule of g;

◮
For the onverse, it is neessary to show that every symbol used in the

derivation of g is aessible, and thus the rules used in this derivation

also appear in g_a.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 127 / 144

Grammar Simpli�ation

Uni�ation

All in the Same Grammar

Theorem g_simpl:

∀ g: fg non_terminal terminal,

non_empty g →
∃ g': fg (non_terminal' non_terminal) terminal,

g_equiv g' g ∧
has_no_inaessible_symbols g' ∧
has_no_useless_symbols g' ∧
(generates_empty g → has_one_empty_rule g') ∧
(∼ generates_empty g → has_no_empty_rules g') ∧
has_no_unit_rules g' ∧
start_symbol_not_in_rhs g'.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 128 / 144

Grammar Simpli�ation

Uni�ation

Proof Outline

Requires the proof that ertain operations preserve some properties of the

original grammar:

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 129 / 144

Chomsky Normal Form

Conept

∀G = (V,Σ, P, S),

∃G′ = (V ′,Σ, P ′, S′) |

L(G) = L(G′)∧

∀(α→ β) ∈ P ′, (β ∈ Σ) ∨ (β ∈ N ·N)

Important for:

◮
Deidability of the membership problem ;

◮
Some parsing algorithms (e.g. CYK);

◮
Pumping Lemma.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 130 / 144

Chomsky Normal Form

Example

As an example, onsider G = ({S′,X, Y, Z, a, b, c}, {a, b, c}, P, S′) with P

equal to:

{S′ → XY Zd,

X → a,

Y → b,

Z → c, }

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 131 / 144

Chomsky Normal Form

Example

The CNF grammar G′
, equivalent to G, would then be the one with the

following set of rules:

{S′ → X[Y Zd],

[Y Zd] → Y [Zd],

[Zd] → Z[d],

[d] → d,

X → a,

Y → b,

Z → c, }

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 132 / 144

Chomsky Normal Form

De�nitions

Indutive non_terminal' (non_terminal terminal : Type): Type:=

| Lift_r: sf → non_terminal'.

Definition g_nf

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal' terminal :=

{| start_symbol:= Lift_r [inl (start_symbol g)℄;

rules:= g_nf_rules g;

rules_finite:= g_nf_finite g |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 133 / 144

Chomsky Normal Form

De�nitions

Indutive g_nf_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_nf_t:

∀ t: terminal,

∀ left: non_terminal,
∀ s1 s2: sf,

rules g left (s1++[inr t℄++s2) →
g_nf_rules g (Lift_r [inr t℄) [inr t℄

| Lift_nf_1:

∀ left: non_terminal,
∀ t: terminal,

rules g left [inr t℄ →
g_nf_rules g (Lift_r [inl left℄) [inr t℄

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 134 / 144

Chomsky Normal Form

De�nitions

| Lift_nf_2:

∀ left: non_terminal,
∀ s1 s2: symbol,

∀ beta: sf,
rules g left (s1 :: s2 :: beta) →
g_nf_rules g (Lift_r [inl left℄)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: beta))℄

| Lift_nf_3:

∀ left: sf,
∀ s1 s2 s3: symbol,

∀ beta: sf,
g_nf_rules g (Lift_r left)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: s3 :: beta))℄ →
g_nf_rules g (Lift_r (s2 :: s3 :: beta))

[inl (Lift_r [s2℄); inl (Lift_r (s3 :: beta))℄.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 135 / 144

Chomsky Normal Form

De�nitions

Definition g_nf'

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal' terminal:=

{| start_symbol:= start_symbol (g_nf g);

rules:= g_nf'_rules g;

rules_finite:= g_nf'_finite g |}.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 136 / 144

Chomsky Normal Form

De�nitions

Indutive g_nf'_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_nf'_all:

∀ left: non_terminal',
∀ right: sf',
g_nf_rules g left right →
g_nf'_rules g left right

| Lift_nf'_new:

g_nf'_rules g (start_symbol (g_nf g)) [℄.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 137 / 144

Chomsky Normal Form

Corretness

Theorem g_nf_final:

∀ g: fg non_terminal terminal,

(produes_empty g ∨ ∼ produes_empty g) ∧
(produes_non_empty g ∨ ∼ produes_non_empty g) →
∃ g': fg non_terminal' terminal,

g_equiv g' g ∧
(is_nf g' ∨ is_nf_with_empty_rule g') ∧
start_symbol_not_in_rhs g'.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 138 / 144

Chomsky Normal Form

Proof Outline

The proof of this theorem requires, among other things, that the original

grammar is �rst simpli�ed aording to the results disussed in the previous

setion.

◮
For the ← part of g_equiv, the strategy adopted is to prove that for

every rule left→ right of g, either left→ right is a rule of g_nf

g or left⇒∗ right in g_nf g;

◮
For the → part, that is, (s1 ⇒∗

g_cnfg s2)→ (s1 ⇒∗

g s2), it is enough

to note that the sentential forms of g are embedded in the sentential

forms of g_nf g, spei�ally in the arguments of the onstrutor

Lift_r of non_terminal'. Thus, a simple extration mehanism

allows the impliation to be proved by indution on the struture of

the sentential form s1.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 139 / 144

Pumping Lemma

Conept

∀L, ontext-free (L)→

∃n | ∀s, (s ∈ L) ∧ (|s| ≥ n)→

(s = uvwxy) ∧ (|vx| > 0) ∧ (|vwx| ≤ n) ∧ (∀i, uviwxiy ∈ L)

◮
A property of all ontext-free languages;

◮
States that from ertain strings of the language it is possible to

generate an in�nite number of other strings that also belong to the

language;

◮
Is used to prove that ertain languages are not ontext-free;

◮
Explores the �niteness of the number of non-terminals, in partiular in

the CNF grammar, and makes extensive use of (binary) trees.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 140 / 144

Conlusions

Computers and mathematis

◮
Pratitioners base is still small;

◮
Learning urve grows (very) slowly;

◮
Advantages of formalization are immense;

◮
Important industrial projets;

◮
Important theoretial works;

◮
Disadvantages are being gradually eliminated;

◮
The trend is learly set.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 141 / 144

Conlusions

This Formalization

◮
Comprehensive set of fundamental results on ontext-free language

theory;

◮
First formalization in Coq (preliminary work by Filliâtre);

◮
First formalization at all of the Pumping Lemma;

◮
Framework to advane with the formalization of CFLs and related

theories.

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 142 / 144

Conlusions

Plans for the Future

◮
Obtain the degree (deadline Feb/2016);

◮
Promote Coq and mathematial formalization through speehs,

workshops and other aademi ativities;

◮
Continue the formalization:

◮
SSRre�et;

◮
Code extration and erti�ed algorithms;

◮
Pushdown automata and other results of CFLs.

◮
Keep learning Coq!

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 143 / 144

Conlusions

Computers and mathematis

◮
Not easy, but very rewarding;

◮
Hope you have enjoyed;

◮
Ask me if you want referenes;

◮
Write me if you have questions or suggestions;

◮
Let me know you if plan to work in this area.

Thank you!

Marus Ramos (UFPE) CFL Theory Formalization July 10th, 2015 144 / 144

	Introduction
	Formal Mathematics
	Proof Assistants
	Coq
	Formalization Projects
	Context-Free Language Theory
	General Picture
	Basic Definitions
	Closure Properties
	Grammar Simplification
	Chomsky Normal Form
	Pumping Lemma
	Conclusions

