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Introdu
tion

Pro�le

◮
Ele
troni
s Engineering at Universidade de São Paulo in 1982;

◮
M.S
. in Digital Systems at Universidade de São Paulo in 1991;

◮
Tea
hing experien
e with programming languages, 
ompilers, formal

languages, automata theory and 
omputation theory sin
e 1991;

◮
Professional experien
e from 1983 to 1999 (software development,

produ
t management, marketing, retail, fran
hising, human resour
es,

IT management);

◮
Current position at UNIVASF (Universidade Federal do Vale do São

Fran
is
o) in Petrolina-PE/Juazeiro-BA sin
e April/2008;

◮
PhD student at UFPE (Universidade Federal de Pernambu
o) sin
e

February/2011;

◮
Full dedi
ation sin
e July/2013.
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Introdu
tion

So...

◮
Formalization?

◮
Context-Free Language Theory?

◮
Why?

◮
How?
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Introdu
tion

S
ope

The obje
tive of this work is to formalize a substantial part of 
ontext-free

language theory in the Coq proof assistant, making it possible to reason

about it in a fully 
he
ked environment, with all the related advantages.

◮
Formalization is the pro
ess of writing proofs su
h that they have a

pre
ise meaning over a simple and well-de�ned 
al
ulus whose rules


an be automati
ally 
he
ked by a ma
hine;

◮
Context-free language theory is fundamental in the representation and

study of arti�
ial languages, spe
ially programming languages, and in

the 
onstru
tion of their pro
essors (
ompilers and interpreters);

◮
The formalization of 
ontext-free language theory is a key to the


erti�
ation of 
ompilers and programs, as well as to the development

of new languages and tools for 
erti�ed programming.

More on the next slides.
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Introdu
tion
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Formal Mathemati
s

General Pi
ture

◮
�Informal� mathemati
s:

◮
Levels of abstra
tion may hide errors di�
ult to tra
e;

◮
Non-uniform notation is also a problem.

◮
Formalization (�
omputer en
oded mathemati
s�) is a 
lear trend

towards theoreti
al development and theory representation;

◮
Computer-aided reasoning and use of proof assistants (intera
tive

theorem provers);

◮
Me
hanized 
he
king of proofs (and programs), enabling:

◮
Che
king of every reasoning step against the inferen
e rules of the

underlying logi
;

◮
Uniform notation.

◮
Advantages:

◮
Less e�ort and time;

◮
Improved reliability.
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Formal Mathemati
s

Software Development

◮
Theorem proofs:

◮
Informal;

◮
Di�
ult to build;

◮
Di�
ult to 
he
k.

◮
Computer programs:

◮
Informal;

◮
Di�
ult to build;

◮
Di�
ult to test.

◮
Coin
iden
e?
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Formal Mathemati
s

Software Development

◮
NOT REALLY, as theorem proving and software development have

essentially the same nature;

◮
A

ording to the Curry-Howard Isomorphism, to develop a program is

the same as to prove a theorem, and vi
e-versa;

◮
Exploring this similarity his 
an be bene�
ial to both a
tivities:

◮
Reasoning 
an be brought into programming, and

◮
Computational ideas 
an be used in theorem proving.

◮
How to improve both then?
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Formal Mathemati
s

Perspe
tives

◮
Formalization (�
omputer en
oded mathemati
s�) is the answer;

◮
Computer-aided reasoning;

◮
Use of proof assistants, also known as intera
tive theorem provers.
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Formal Mathemati
s

Ba
kground

Required before starting to use Coq:

◮
Natural Dedu
tion;

◮
Untyped Lambda Cal
ulus;

◮
Typed Lambda Cal
ulus;

◮
Curry-Howard Isomorphism;

◮
Type Theory;

◮
Constru
tivism and BHK;

◮
Martin Löf's Intuitionisti
 Type Theory;

◮
Cal
ulus of Constru
tions with Indu
tive De�nitions.
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Formal Mathemati
s

Ba
kground
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Formal Mathemati
s

Natural Dedu
tion

◮
Cal
ulus for theorem proving;

◮
Part of Proof Theory;

◮
Based in simple inferen
e rules that resemble the rules of natural

thinking;

◮
Ea
h 
onne
tive is asso
iated to introdu
tion and elimination rules;

◮
The proof of a theorem (proposition) is a stru
tured sequen
e of

inferen
e rules that validate the 
on
lusion, usually without depending

on any hypothesis;

◮
The proof is represented as a tree;

◮
Gentzen (1935) and Prawitz (1965);

◮
Originally developed for propositional logi
, was later extended for

predi
ate logi
.
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Formal Mathemati
s

Untyped Lambda Cal
ulus

Formal system used for the representation of 
omputations.

◮
Based on the de�nition and appli
ation of fun
tions;

◮
Fun
tions are treated as higher-order obje
ts, as they 
an be passed as

arguments and returned as values from other fun
tions;

◮
Simpli
ity: only two 
onstru
ts (�
ommands�);

◮
Allows the 
ombination of basi
 fun
tions in the 
reation of more


omplex fun
tions;

◮
Even in the pure version (without 
onstants), allows the representation

of a broad range of datatypes, in
luding booleans, natural numbers,

integers et
, and operations on their values.

◮
Untyped and typed versions.
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Formal Mathemati
s

Untyped Lambda Cal
ulus

◮
Alonzo Chur
h, 1903-1995, United States;

◮
Invented the Lambda Cal
ulus in the 1930s;

◮
Result of his investigations about the foundations of mathemati
s;

◮
Intended to formalize mathemati
s through the notion of fun
tions,

instead of the notion of sets;

◮
Although he did not su

eed in this obje
tive, his work was of great

importante in other areas, spe
ially in 
omputer s
ien
e.
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Formal Mathemati
s

Untyped Lambda Cal
ulus

Mathemati
al model for:

◮
Theory, spe
i�
ation and implementation of programming languages,

spe
ially the fun
tional ones.

◮
Program veri�
ation;

◮
Representation of 
omputable fun
tions;

◮
Computability theory;

◮
Proof theory.

Was used in the demonstration of the unde
idability of various problems,

even before the ma
hine-based formalisms (e.g. Turing Ma
hine).
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Formal Mathemati
s

Typed Lambda Cal
ulus

◮
Created by Chur
h to avoid the in
onsisten
ies of the untyped version;

◮
Type tags are asso
iated to lambda terms;

◮
Variables have base types (x : σ);

◮
Abstra
tions and appli
ations 
reate new types a

ordingly;

◮
Types must mat
h;

◮
Less powerful model of 
omputation;

◮
Type systems for programming languages;

◮
Equality of terms is de
idable;

◮
Strongly normalizing (all 
omputations terminate);

◮ (λx.xx)(λx.xx) and (λx.xxy)(λx.xxy) are not terms of the typed

lambda 
al
ulus.
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Formal Mathemati
s

Curry-Howard Isomorphism

Mathemati
s is all about:

◮
Reasoning;

◮
Computing.

For long time 
onsidered as separate areas; even today, ignored by many.

Any relation there?
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Formal Mathemati
s

Curry-Howard Isomorphism

YES, a

ording to the Curry-Howard Isomorphism.

◮
There is a dire
t relationship between reasoning (as expressed by

�rst-order logi
 and natural dedu
tion) and 
omputing (as expressed

by the typed lambda 
al
ulus);

◮
Proofs-as-programs or Propositions-as-types notions;

◮
First observed by (Haskell) Curry in 1934, later developed and

extended by Curry in 1958 and William Howard in 1969;
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Formal Mathemati
s

Curry-Howard Isomorphism

◮
This has many important 
onsequen
es as is the basis of modern

software development and 
omputer assisted theorem proo�ng:

◮
Reasoning prin
iples and te
hniques 
an be brought into software

development;

◮
Computing (idem) 
an be used in theorem proving.

◮
In the simply typed lambda 
al
ulus, the fun
tion operator (→)


orresponds to the impli
ation 
onne
tive (⇒); 
orresponden
es also

exist for other operators.
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Formal Mathemati
s

Curry-Howard Isomorphism

General pi
ture:

Proofs Theorems

Programs Types

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 22 / 144



Formal Mathemati
s

Curry-Howard Isomorphism

Proofs & Theorems

First of all:

Proofs ⇔ Theorems

Programs Types
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Formal Mathemati
s

Proofs & Theorems

Example

Proof:

a⇒ (b⇒ c) a
(⇒ E)

b⇒ c b
(⇒ E)c

(⇒ I)a⇒ c
(⇒ I)

b⇒ (a⇒ c)
(⇒ I)

(a⇒ (b⇒ c))⇒ (b⇒ (a⇒ c))

Theorem:

(a⇒ (b⇒ c))⇒ (b⇒ (a⇒ c))
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Formal Mathemati
s

Curry-Howard Isomorphism

Programs & Types

Also:

Proofs Theorems

Programs ⇔ Types
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Formal Mathemati
s

Programs & Types

Example

Program:

x : a→ (b→ c) z : a
(→ E)

xz : b→ c y : b
(→ E)xzy : c

(→ I)
λza.xzy : (a→ c)

(→ I)
λyb.λza.xzy : (b→ (a→ c))

(→ I)

λxa→(b→c).λyb.λza.xzy : (a→ (b→ c))→ (b→ (a→ c))

Type:

(a→ (b→ c))→ (b→ (a→ c))
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Formal Mathemati
s

Curry-Howard Isomorphism

Theorems & Types

Next, it is easy to observe that:

Proofs

Theorems

m

Programs

Types

Types (spe
i�
ations) and Theorems (propositions) share the same

synta
ti
 stru
ture.
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Formal Mathemati
s

Theorems & Types

Example

Type or theorem?

Type:

(a→ (b→ c))→ (b→ (a→ c))

Theorem:

(a⇒ (b⇒ c))⇒ (b⇒ (a⇒ c))
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Formal Mathemati
s

Curry-Howard Isomorphism

The Isomorphism

Logi
 Typed lambda 
al
ulus

⇒ (impli
ation) → (fun
tion type)

∧ (and) × (produ
t type)

∨ (or) + (sum type)

∀ (forall) Π (pi type)

∃ (exists) Σ (sigma type)

⊤ unit type

⊥ bottom type
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Formal Mathemati
s

Curry-Howard Isomorphism

Proofs & Programs

Finally, the isomorphism extends to:

Proofs

Theorems

m
Programs

Types

One 
an be obtained dire
tly from the other:

◮
From Proof to Program: by adding the terms with the 
orresponding

types;

◮
From Program to Proof: by eliminating the terms and keeping only

the types.
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Formal Mathemati
s

Proofs & Programs

Example

Proof:

a ⇒ (b ⇒ c) a
(⇒ E)

b ⇒ c b
(⇒ E)c

(⇒ I)a ⇒ c
(⇒ I)

b ⇒ (a ⇒ c)
(⇒ I)

(a ⇒ (b ⇒ c)) ⇒ (b ⇒ (a ⇒ c))

Program:

x : a → (b → c) z : a
(→ E)

xz : b → c y : b
(→ E)

xzy : c
(→ I)

λza.xzy : (a → c)
(→ I)

λyb.λza.xzy : (b → (a → c))
(→ I)

λxa→(b→c).λyb.λza.xzy : (a → (b → c)) → (b → (a → c))
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Formal Mathemati
s

Curry-Howard Isomorphism

Consequen
es

◮
To build a program that satis�es a spe
i�
ation (type):

◮
Interpret the spe
i�
ation as a theorem (proposition);

◮
Build a proof tree for this theorem;

◮
Add terms with the 
orresponding types.

◮
To build a proof of a theorem:

◮
Interpret the theorem as a spe
i�
ation;

◮
Build a program that meets the spe
i�
ation;

◮
Remove the terms from the derivation tree.
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Formal Mathemati
s

Curry-Howard Isomorphism

Consequen
es

Summary:

◮
To build a program is the same as to build a proof;

◮
To build a proof is the same as to build a program;

◮
To verify a program is the same as to verify a proof;

◮
Both veri�
ations 
an be done via simple and e�
ient type 
he
king

algorithms.
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Formal Mathemati
s

Type Theory

A Type Theory is a theory that allows one to assign types to variables and


onstru
t 
omplex type expressions. Then, lambda expressions 
an be

derived to meet a 
ertain type, or the type of an existing expression 
an be

obained by following the theory's inferen
e rules.

◮
Originally developed by Bertrand Russell in the 1910s as a tentative of

�xing the paradoxes of set theory (�is the set 
omposed of all sets that

are not members of themselves a member of itself?�);

◮
The Simply Typed Lambda Cal
ulus is a type theory with a single

operator (→) and was developed by Chur
h in the 1940s as a

tentative of �xing the in
onsisten
ies of the untyped lambda 
al
ulus;

◮
Sin
e then it has been extended with many new operators;

◮
Various di�erent type theories exist nowadays;

◮
Martin Löf's Intuitionisti
 Type Theory is one of the most important.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 34 / 144



Formal Mathemati
s

Constru
tivism and BHK

◮
Every true proposition must be a

ompanied by a proof of the validity

of the statement; the proof must explain how to build the obje
t that

validates the argument (proposition);

◮
Proposed by Brouwer, Heyting and Kolgomorov, the BHK

interpretation leaves behind the idea of the truth values of Tarski;

◮ x : σ is interpreted as x is a proof of σ;
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Formal Mathemati
s

Constru
tivism and BHK

A proof of...

◮ a⇒ b is a mapping that 
reates a proof of b from a proof of a

(fun
tion);

◮ a ∧ b is a proof of a together with a proof of b (pair);

◮ a ∨ b is a proof of a or a proof of b together with an indi
ation of the

sour
e (pair);

◮ ∀x : A.P (x) is a mapping that 
reates a proof of P (t) for every t in A

(fun
tion);

◮ ∃x : A.P (x) is an obje
t t in A together with a proof of P (t) (pair).
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Formal Mathemati
s

Constru
tivism and BHK

◮
Constru
tivism does not use the Law of the Ex
luded Middle (p ∨ ¬p)
or any of its equivalents, that belong to 
lassi
 logi
 only:

◮
Double negation ¬(¬p)⇒ p;

◮
Proof by 
ontradi
tion (¬a⇒ b) ∧ (¬a⇒ ¬b)⇒ a;

◮
Peir
e's Law ((p⇒ q)⇒ p)⇒ p.

◮
A 
onstru
tive proof is said to have 
omputational 
ontent, as it is

possible to �
onstru
t� the obje
t that validates the proposition (the

proof is a re
ipe for building this obje
t);

◮
A 
onstru
tive proof enables (
omputer) 
ode extra
tion from proofs,

thus the interest for it in 
omputer s
ien
e.
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Formal Mathemati
s

Constru
tivism

A

ording to Troelstra:

�... the insisten
e that mathemati
al obje
ts are to be 
onstru
ted

(mental 
onstru
tions) or 
omputed; thus theorems asserting the

existen
e of 
ertain obje
ts should by their proofs give us the

means of 
onstru
ting obje
ts whose existen
e is being asserted.�
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Formal Mathemati
s

Martin Löf's Intuitionisti
 Type Theory

A 
onstru
tive type teory based on:

1

First-order logi
 to represent types and propositions;

2

Typed lambda 
al
ulus to represent programs and theorems.

and stru
tured around the Curry-Howard Isomorphism.

◮
It is a powerful theory for sotware development and intera
tive

theorem proving;

◮
Also used as a theory for the foundations of mathemati
s.
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Formal Mathemati
s

Cal
ulus of Constru
tions with Indu
tive De�nitions

A ri
hly typed lambda 
al
ulus extended with indu
tive de�nitions.

◮
Cal
ulus of Constru
tions developed by Thierry Coquand;

◮
Constru
tive type theory;

◮
Later extended with indu
tive de�nitions;

◮
Used as the mathemati
al language of the Coq proof assistant
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Formal Mathemati
s

Cal
ulus of Constru
tions

◮
All logi
al operators (→,∧,∨,¬ and ∃) are de�ned in terms of the

universal quanti�er (∀), using �dependent types�;

◮
Types and programs (terms) have the same synta
ti
al stru
ture;

◮
Types have a type themselves (
alled �Sort�);

◮
Base sorts are �Prop� (the type of propositions) and �Set� (the type

of small sets);

◮ Prop : Type(1), Set : Type(1), Type(i) : Type(i+ 1), i ≥ 1;

◮ S = {Prop, Set, Type(i) | i ≥ 1} is the set of sorts;

◮
Various datatypes 
an be de�ned (naturals, booleans et
);

◮
Set of typing and 
onversion rules.
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Formal Mathemati
s

Indu
tive De�nitions

Finite de�nition of in�nite sets.

◮
�Constru
tors� de�ne the elements of a set;

◮
Constru
tors 
an be base elements of the set;

◮
Constru
tors 
an be a fun
tions that takes set elements and return

new set elements.

◮
Manipulation is done via �pattern mat
hing� over the indu
tive

de�nitions.
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Formal Mathemati
s

Indu
tive De�nitions

Booleans

{false,true}

Indu
tive boolean:

| false: boolean

| true: boolean.

Variable x: boolean.

Definition f: boolean:= false.
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Formal Mathemati
s

Indu
tive De�nitions

Naturals

{0, 1, 2, 3, ...} = {O, SO, SSO, SSSO, ...}

Indu
tive nat:=

| O: nat

| S: nat->nat.

Variable y: nat.

Definition zero: nat:= O.

Definition one: nat:= S O.

Definition two: nat:= S one.
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Formal Mathemati
s

Indu
tive De�nitions

String sets

Indu
tive ss:=

| ss_empty: ss

| ss_item: string->ss

| ss_build: string->ss->ss.

Variable z: ss.

Definition ss0: ss:= ss_empty.

Definition ss1: ss:= ss_item "ab
".

Definition ss2: ss:= ss_build "def" (ss_item "ab
").

Definition ss3: ss:= ss_build "ghi" (

ss_build "def" (ss_item "ab
")).
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Formal Mathemati
s

Indu
tive De�nitions

Pattern mat
hing

Booleans:

Definition negb (x: bool): bool:=

mat
h x with

| false => true

| true => false

end.
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Formal Mathemati
s

Indu
tive De�nitions

Pattern mat
hing

Naturals:

Definition sub (n: nat): nat :=

mat
h n with

| O => O

| S m => m

end.

Fixpoint nat_equal (n1 n2: nat): bool :=

mat
h n1, n2 with

| O, O => true

| S m, S n => nat_equal m n

| O, S n => false

| S m, O => false

end.
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Proof Assistants

Chara
teristi
s

◮
Software tools that assist the user in theorem proving and program

development;

◮
First initiative dates from 1967 (Automath, De Bruijn);

◮
Many provers are available today (Coq, Agda, Mizar, HOL, Isabelle,

Matita, Nuprl...);

◮
Intera
tive;

◮
Graphi
al interfa
e;

◮
Proof/program 
he
king;

◮
Proof/program 
onstru
tion.
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Proof Assistants

Usage

1

The user writes a statement (proposition) or a type expression

(spe
i�
ation) in the language of the underlying logi
;

2

He 
onstru
ts (dire
tly or indire
tly):

◮
A proof of the theorem;

◮
A program (term) that 
omplies to the spe
i�
ation.

3

Dire
tly: the proof/term is written in the formal language a

epted by

the assistant;

4

Indire
tly: the proof/term is built with the assistan
e of an intera
tive

�ta
ti
s� language:

5

In either 
ase, the assistant 
he
ks that the proof/term 
omplies to

the theorem/spe
i�
ation.
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Proof Assistants

Che
k and/or 
onstru
t

◮
Proof assistants 
he
k that proofs/terms are 
orre
tly 
onstru
ted;

◮
This is done via simple type-
he
king algorithms;

◮
Automated proof/term 
onstru
tion might exist is some 
ases, to

some extent, but this is not the main fo
us;

◮
Thus the name �proof assistant�;

◮
Automated theorem proo�ng might be pursued, due to �proof

irrelevan
e�;

◮
Automated program development, on the other hand, is unrealisti
.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 50 / 144



Proof Assistants

Main bene�ts

◮
Proofs and programs 
an be me
hani
ally 
he
ked, saving time and

e�ort and in
reasing reliability;

◮
Che
king is e�
ient;

◮
Results 
an be easily stored and retrieved for use in di�erent 
ontexts;

◮
Ta
ti
s help the user to 
onstru
t proofs/programs;

◮
User gets deeper insight into the nature of his proofs/programs,

allowing further improvement.
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Proof Assistants

Appli
ations

◮
Formalization and veri�
ation of theorems and whole theories;

◮
Veri�
ation of 
omputer programs;

◮
Corre
t software development;

◮
Automati
 review of large and 
omplex proofs submitted to journals;

◮
Veri�
ation of hardware and software 
omponents.
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Proof Assistants

Drawba
ks

◮
Failures in infrastru
ture may de
rease 
on�den
e in the results (proof

assistant 
ode, language pro
essors, operating system, hardware et
);

◮
Size of formal proofs;

◮
Redu
ed numer of people using proof assistants;

◮
Slowly in
reasing learning 
urve;

◮
Resemblan
e of 
omputer 
ode keeps pure mathemati
ians

uninterested.
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Coq

Overview

◮
Developed by Huet/Coquand at INRIA in 1984;

◮
First version released in 1989, indu
tive types were added in 1991;

◮
Continuous development and in
reasing usage sin
e then;

◮
The underlying logi
 is the Cal
ulus of Constru
tions with Indu
tive

De�nitions;

◮
It is implemented by a typed fun
tional programming with a higher

order logi
 language 
alled Gallina;

◮
Intera
tion with the user is via a 
ommand language 
alled Verna
ular;

◮
Constru
tive logi
 with large standard library and user 
ontributions

base;

◮
Extensible environment;

◮
All resour
es freely available from http://
oq.inria.fr/.
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Coq

User session

The proof 
an be 
onstru
ted dire
tly ou indire
tly.

In the indire
t 
ase,

◮
The initial goal is the theorem/spe
i�
ation supplied by the user;

◮
The environment and the 
ontext are initially empty;

◮
The appli
ation of a �ta
ti
s� substitutes the 
urrent goal for zero ou

more subgoals;

◮
The 
ontext 
hanges and might in
orporate new hypotheses;

◮
The pro
ess is repeated for ea
h subgoal, until no subgoal remains;

◮
The proof/term is 
onstru
ted from the sequen
e of ta
ti
s used.
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Coq

Ta
ti
s usage

◮
Inferen
e rules map premises to 
on
lusions;

◮
Forward reasoning is the pro
ess of moving from premises to


on
lusions;

◮
Example: from a proof of a and a proof of b one 
an prove a ∧ b;

◮
Ba
kward reasoning is the pro
ess of moving from 
on
lusions to

premises;

◮
Example: to prove a ∧ b one has to prove a and also prove b;

◮
Coq uses ba
kward reasoning;

◮
They are implemented by �ta
ti
s�;

◮
A ta
ti
 redu
es a goal to its subgoals, if any, or simply proves the

goal.
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Coq

Certi�ed software development

1

Write the spe
i�
ations as type expressions;

2

Interpret them as theorems;

3

Build the proofs;

4

Let the proof assistant 
he
k them;

5

Convert them to 
omputer programs using the 
ode extra
tion fa
ility.
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Formalization Proje
ts

Introdu
tion

◮
Great and in
reasing interest in formal proof and program

development over the re
ent years;

◮
Main areas in
lude:

◮
Programming language semanti
s formalization;

◮
Mathemati
s formalization;

◮
Edu
ation.

◮
Important proje
ts in both a
ademy and industry;

◮
Top 100 theorems (91% formalized as of July/2015);

◮
Che
k http://www.
s.ru.nl/~freek/100/;

◮
One way road.
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Formalization Proje
ts

Four Color Theorem

◮
Stated in 1852, proved in 1976 and again in 1995;

◮
The two proofs used 
omputers to a some extent, but were not fully

me
hanized;

◮
In 2005, Georges Gonthier (Mi
rosoft Resear
h) and Benjamin Werner

(INRIA) produ
ed a proof s
ript that was fully 
he
ked by a ma
hine;

◮
Milestone in the history of 
omputer assisted proo�ng;

◮
60,000 lines of Coq s
ript and 2,500 lemmas;

◮
Byprodu
ts.
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Formalization Proje
ts

Four Color Theorem

�Although this work is purportedly about using 
omputer

programming to help doing mathemati
s, we expe
t that most of

its fallout will be in the reverse dire
tion using mathemati
s to

help programming 
omputers.�

Georges Gonthier
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Formalization Proje
ts

Odd Order Theorem

◮
Also known as the Feit-Thomson Theorem;

◮
Important to mathemati
s (in the 
lassi�
ation of �nite groups) and


ryptography;

◮
Conje
tured in 1911, proved in 1963;

◮
Formally proved by a team led by Georges Gonthier in 2012;

◮
Six years with full-time dedi
ation;

◮
Huge a
hievement in the history of 
omputer assisted proo�ng;

◮
150,000 lines of Coq s
ript and 13,000 theorems;
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Formalization Proje
ts

Compiler Certi�
ation

◮
CompCert, a fully veri�ed 
ompiler for a large subset of C that

generates PowerPC 
ode;

◮
Obje
t 
ode is 
erti�ed to 
omply with the sour
e 
ode in all 
ases;

◮
Appli
ations in avioni
s and 
riti
al software systems;

◮
Not only 
he
ked, but also developed in Coq;

◮
Three persons-years over a �ve yers period;

◮
42,000 lines of Coq 
ode.
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Formalization Proje
ts

Mi
rokernel Certi�
ation

◮
Criti
al 
omponent of operating systems, runs in privileged mode;

◮
Harder to test in all situations;

◮
seL4, written in C (10,000 lines), was fully 
he
ked in HOL/Isabelle;

◮
No 
rash, no exe
ution of any unsafe operation in any situation;

◮
Proof is 200,000 lines long;

◮
11 persons-years, 
an go down to 8, 100% overhead over a

non-
erti�ed proje
t.
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Formalization Proje
ts

Digital Se
urity Certi�
ation

◮
JavaCard smart 
ard platform;

◮
Personal data su
h as banking, 
redit 
ard, health et
;

◮
Multiple appli
ations by di�erent 
ompanies;

◮
Con�den
e and integrity must be assured;

◮
Formalization of the behaviour and the properties of its 
omponents;

◮
Complete 
erti�
ation, highest level a
hieved;

◮
INRIA, S
hlumberger and Gemalto.
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Context-Free Language Theory

Overview

◮
Part of Formal Language Theory (Chomsky Hierar
hy):

◮
Regular Languages;

◮
Context-Free Languages;

◮
Context-Sensitive Languages;

◮
Re
ursively Enumerable Languages.

◮
Developed from mid 1950s to late 1970s;

◮
Relevant to the representation, study and implementation of arti�
ial

languages;
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Context-Free Language Theory

Overview

In
ludes:

◮
Context-free grammars, pushdown automata and notations (e.g.

BNF);

◮
Equivalen
e of grammars and automata;

◮
Grammar simpli�
ation;

◮
Normal forms;

◮
Derivation trees, parsing and ambiguity;

◮
Determinism and non-determinism;

◮
Closure properties;

◮
De
idable and unde
idable problems;

◮
Relation with other language 
lasses.
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General Pi
ture

Origins

◮
Experien
e in tea
hing language and automata theory;

◮
Book Linguagens Formais published in 2009 (with J.J. Neto and I.S.

Vega);

◮
Algorithms were used instead of demonstrations for most theorems;

◮
Interest in formalization after studying logi
, lambda 
al
ulus, type

theory and Coq;

◮
Desire to follow the lines of the book and formalize its 
ontents;

◮
Related work:

◮
Regular languages have already been formalized to a large extend;

◮
Some formalization of 
ontext-free languages appeared in re
ent years,

mostly in HOL4 and Agda.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 67 / 144



General Pi
ture

Obje
tives

To formally state and prove the following fundamental results on


ontext-free language theory:

1

Closure properties:

◮
Union;

◮
Con
atenation;

◮
Kleene star.

2

Grammar simpli�
ation:

◮
Elimination of empty rules;

◮
Elimination of unit;

◮
Elimination of useless symbols;

◮
Elimination of ina

essible symbols.

3

Chomsky Normal Form;

4

Pumping Lemma.

Six main theorems.
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General Pi
ture

Current Status

◮
600+ lemmas and theorems, 20+ libraries, 25.000+ lines of s
ripts;

◮
2 year e�ort;

◮
Representation of all relevant obje
ts of the universe of dis
ourse using

indu
tive de�nitions for types and propositions:

◮
Terminal and non-terminal symbol sets;

◮
Senten
e and sentential forms;

◮
Rules;

◮
Context-free grammars;

◮
Derivations;

◮
Trees.

◮
De
larative style;

◮
Closer to textbook de�nitions;

◮
More abstra
t to deal with;

◮
Does not allow for the extra
tion of 
erti�ed programs.

◮
Currently �nishing the formalization of the Pumping Lemma.
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Basi
 De�nitions

Context-Free Grammar

G = (V,Σ, P, S), where:

◮ V is the vo
abulary of G;

◮ Σ is the set of terminal symbols;

◮ N = V \ Σ is the set of non-terminal symbols;

◮ P is the set of rules α→ β, with α ∈ N and β ∈ V ∗
;

◮ S ∈ N is the start symbol.

Re
ord 
fg (non_terminal terminal : Type): Type:= {

start_symbol: non_terminal;

rules: non_terminal→ sf → Prop;

rules_finite:

∃ n: nat,

∃ ntl: nlist,
∃ tl: tlist,
rules_finite_def start_symbol rules n ntl tl }.
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Basi
 De�nitions

Context-Free Grammar

Making sure that 
fg represents a 
ontext-free grammar:

◮
General types might have an in�nite number of elements;

◮
We must 
he
k that the rules of the grammar are built from �nite sets

of terminal and non-terminal symbols;

◮
We must also 
he
k that the set of rules is �nite;

◮
The predi
ate rules_finite_def is used to make sure that these


onditions are satis�ed for every grammar in the formalization, either

user-de�ned or 
onstru
ted;

◮
A list of non-terminal symbols (ntl), a list of terminal symbols (tl)

and an upper bound on the length of the right-hand side of the rules

(n) must be supplied.
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Basi
 De�nitions

Example

G = ({S′, A,B, a, b}, {a, b}, {S′ → aS′, S′ → b}, S′) generates the
language a∗b.

Indu
tive nt1: Type:= | S' | A | B.

Indu
tive t1: Type:= | a | b.

Indu
tive rs1: nt1 → list (nt1 + t1) → Prop:=

r1: rs1 S' [ inr a; inl S'℄

| r2: rs1 S' [ inr b℄.

Definition g1: 
fg nt1 t1:= {|

start_symbol:= S';

rules:= rs1;

rules_finite:= rs1_finite |}.
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Basi
 De�nitions

Derivation

Substitution pro
ess:

s1 derives s2 by appli
ation of zero or more rules: s1 ⇒∗ s2.

Indu
tive derives

(non_terminal terminal : Type)

(g : 
fg non_terminal terminal)

: sf → sf → Prop :=

| derives_refl :

∀ s : sf,

derives g s s

| derives_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)
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Basi
 De�nitions

Derivation

◮
Predi
ate generates: a derivation that begins with the start symbol

of the grammar;

◮
Predi
ate produ
es: a derivation that begins with the start symbol of

the grammar and ends with a senten
e.

S ⇒ α1 ⇒
derives

︷ ︸︸ ︷

α2 ⇒ ...⇒ αn−1
︸ ︷︷ ︸

generates

⇒ αn ⇒ ω

︸ ︷︷ ︸

produ
es
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Basi
 De�nitions

Example

S ⇒ aS ⇒ aaS ⇒ aab

Lemma produ
es_g1_aab:

produ
es g1 [a; a; b℄.

Proof.

unfold produ
es.

unfold generates.

simpl.

apply derives_step with (s2:=[inr a; inr a℄)(left:=S')(right:=[inr b℄).

apply derives_step with (s2:=[inr a℄)(left:=S')(right:=[inr a;inl S'℄).

apply derives_start with (left:=S')(right:=[inr a;inl S'℄).

apply r11.

apply r11.

apply r12.

Qed.
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Basi
 De�nitions

Grammar Equivalen
e

g1 ≡ g2
if they generate the same language, that is,

∀s, (S1 ⇒∗

g1
s)↔ (S2 ⇒∗

g2
s)

Definition g_equiv

(non_terminal1 non_terminal2 terminal : Type)

(g1: 
fg non_terminal1 terminal)

(g2: 
fg non_terminal2 terminal): Prop:=

∀ s: senten
e,

produ
es g1 s ↔ produ
es g2 s.
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Basi
 De�nitions

Context-Free Language

◮
A language is a set of strings over a given alphabet;

◮
A 
ontext-free language is a language that is generated by some


ontext-free grammar: L(G) = {w |S ⇒∗

g w}.

Definition lang (terminal: Type):= senten
e→ Prop.

Definition lang_of_g (g: 
fg): lang :=

fun w: senten
e⇒ produ
es g w.

Definition lang_eq (l k: lang) :=

∀ w, l w ↔ k w.

Definition 
fl (terminal: Type) (l: lang terminal): Prop:=

∃ non_terminal: Type,
∃ g: 
fg non_terminal terminal,

lang_eq l (lang_of_g g).
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Basi
 De�nitions

Generi
 CFG Library

General purpose lemmas:

◮ ∀g, s1, s2, s3, (s1 ⇒∗

g s2)→ (s2 ⇒∗

g s3)→ (s1 ⇒∗

g s3)

◮ ∀g, s1, s2, s, s′, (s1 ⇒∗

g s2)→ (s · s1 · s′ ⇒∗

g s · s2 · s
′)

◮ ∀g, s1, s2, s3, s4, (s1 ⇒∗

g s2)→ (s3 ⇒∗

g s4)→ (s1 · s3 ⇒∗

g s2 · s4)

◮ ∀g, s1, s2, s3, (s1 · s2 ⇒∗

g s3)→ ∃s
′

1, s
′

2 | (s3 = s′1 · s
′

2) ∧ (s1 ⇒∗

g

s′1) ∧ (s2 ⇒∗

g s
′

2)

◮ ∀g, s1, s2, n, w, (s1 · n · s2 ⇒∗

g w)→ ∃w
′ | (n⇒∗

g w′)

◮ ∀g, n,w, (n⇒∗

g w)→ (n→g w)∨(∃right |n→g right∧right⇒∗

g w)

◮ ∀g1, g2, g3, (g1 ≡ g2) ∧ (g2 ≡ g3)→ (g1 ≡ g3)
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Basi
 De�nitions

Methodology

For 
losure properties, grammar simpli�
ation and Chomsky normal form:

1

Indu
tively de�ne the new non-terminal symbols (if ne
essary);

2

Indu
tively de�ne the rules of the new grammar;

3

De�ne the new grammar;

4

Show that the new grammar has the desired properties;

5

Consolidate the results.
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Closure Properties

Overview

Context-free languages are 
losed under union, 
on
atenation and

Kleene star.

◮
De�ne union, 
on
atenation and Kleene star operations;

◮
Prove that the resulting languages are 
ontext-free;

◮
Prove that the resulting languages 
ontain exa
tly the expe
ted

strings.

First with grammars, then with languages.
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Closure Properties

Union

De�nitions

Constru
t g3 su
h that L(g3) = L(g1) ∪ L(g2):

Indu
tive g_uni_nt (non_terminal_1 non_terminal_2 : Type): Type:=

| Start_uni

| Transf1_uni_nt: non_terminal_1→ g_uni_nt

| Transf2_uni_nt: non_terminal_2→ g_uni_nt.

Definition g_uni

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: 
fg non_terminal_1 terminal)

(g2: 
fg non_terminal_2 terminal)

: (
fg g_uni_nt terminal):=

{| start_symbol:= Start_uni;

rules:= g_uni_rules g1 g2;

rules_finite:= g_uni_finite g1 g2 |}.
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Closure Properties

Union

De�nitions

Indu
tive g_uni_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: 
fg non_terminal_1 terminal)

(g2: 
fg non_terminal_2 terminal)

: g_uni_nt→ sfu → Prop :=

| Start1_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf1_uni_nt (start_symbol g1))℄

| Start2_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf2_uni_nt (start_symbol g2))℄
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Closure Properties

Union

De�nitions

| Lift1_uni:

∀ nt: non_terminal_1,
∀ s: sf1,

rules g1 nt s →
g_uni_rules g1 g2 (Transf1_uni_nt nt) (map g_uni_sf_lift1 s)

| Lift2_uni:

∀ nt: non_terminal_2,
∀ s: sf2,

rules g2 nt s →
g_uni_rules g1 g2 (Transf2_uni_nt nt) (map g_uni_sf_lift2 s).
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Closure Properties

Union

Corre
tness

∀g1, g2, s1, s2, (S1 ⇒∗

g1
s1 → S3 ⇒∗

g3
s1) ∧ (S2 ⇒∗

g2
s2 → S3 ⇒∗

g3
s2)

Theorem g_uni_
orre
t:

∀ g1: 
fg non_terminal_1 terminal,

∀ g2: 
fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
(generates g1 s1 → generates (g_uni g1 g2) (map g_uni_sf_lift1 s1))

∧
(generates g2 s2 → generates (g_uni g1 g2) (map g_uni_sf_lift2 s2)).
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Closure Properties

Union

Completeness

∀s3, (S3 ⇒∗

g3
s3)→ (S1 ⇒∗

g1
s3) ∨ (S2 ⇒∗

g2
s3)

Theorem g_uni_
orre
t_inv:

∀ g1: 
fg non_terminal_1 terminal,

∀ g2: 
fg non_terminal_2 terminal,

∀ s: sfu,

generates (g_uni g1 g2) s →
(s=[inl (start_symbol (g_uni g1 g2))℄) ∨
(∃ s1: sf1, (s=(map g_uni_sf_lift1 s1) ∧ generates g1 s1)) ∨
(∃ s2: sf2, (s=(map g_uni_sf_lift2 s2) ∧ generates g2 s2)).
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Closure Properties

Union

Proofs Outline

◮
The 
orre
tness proof is straightforward and was obtained dire
tly

from the de�nition of the 
orresponding grammars;

◮
The 
ompleteness proofs is more 
ompli
ated, and was 
onstru
ted by

indu
tion on the indu
tive de�nition derives, with extensive 
ase

analysis;

◮
Equivalent statements were proved using 
ontext-free languages

instead of 
ontext-free grammars:

Indu
tive l_uni (l1 l2: lang terminal): lang terminal:=

| l_uni_l1: ∀ s: senten
e, l1 s → l_uni l1 l2 s

| l_uni_l2: ∀ s: senten
e, l2 s → l_uni l1 l2 s.

Theorem l_uni_is_
fl:

∀ l1 l2: lang terminal, 
fl l1 → 
fl l2 → 
fl (l_uni l1 l2).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 86 / 144



Closure Properties

Con
atenation

De�nitions

Constru
t g3 su
h that L(g3) = L(g1) · L(g2):

Indu
tive g_
at_nt (non_terminal_1 non_terminal_2 terminal : Type)

: Type:=

| Start_
at

| Transf1_
at_nt: non_terminal_1→ g_
at_nt

| Transf2_
at_nt: non_terminal_2→ g_
at_nt.

Definition g_
at

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: 
fg non_terminal_1 terminal)

(g2: 
fg non_terminal_2 terminal)

: (
fg g_
at_nt terminal):=

{| start_symbol:= Start_
at;

rules:= g_
at_rules g1 g2;

rules_finite:= g_
at_finite g1 g2 |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 87 / 144



Closure Properties

Con
atenation

De�nitions

Indu
tive g_
at_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: 
fg non_terminal_1 terminal)

(g2: 
fg non_terminal_2 terminal)

: g_
at_nt→ sf
 → Prop :=

| New_
at:

g_
at_rules g1 g2 Start_
at

([ inl (Transf1_
at_nt (start_symbol g1))℄++

[ inl (Transf2_
at_nt (start_symbol g2))℄)
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Closure Properties

Con
atenation

De�nitions

| Lift1_
at:

∀ nt s,

rules g1 nt s →
g_
at_rules g1 g2 (Transf1_
at_nt nt) (map g_
at_sf_lift1 s)

| Lift2_
at:

∀ nt s,

rules g2 nt s →
g_
at_rules g1 g2 (Transf2_
at_nt nt) (map g_
at_sf_lift2 s).
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Closure Properties

Con
atenation

Corre
tness

∀g1 g2, s1, s2, (S1 ⇒∗

g1
s1) ∧ (S2 ⇒∗

g2
s2)→ (S3 ⇒∗

g3
s1s2)

Theorem g_
at_
orre
t:

∀ g1: 
fg non_terminal_1 terminal,

∀ g2: 
fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
generates g1 s1 ∧ generates g2 s2 →
generates (g_
at g1 g2) ((map g_
at_sf_lift1 s1)++

(map g_
at_sf_lift2 s2)).

Mar
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Closure Properties

Con
atenation

Completeness

∀s3, (S3 ⇒∗

g3
s3)→ ∃s1, s2 | (s3 = s1 · s2) ∧ (S1 ⇒∗

g1
s1) ∧ (S2 ⇒∗

g2
s2)

Theorem g_
at_
orre
t_inv:

∀ g1: 
fg non_terminal_1 terminal,

∀ g2: 
fg non_terminal_2 terminal,

∀ s: sf
,

generates (g_
at g1 g2) s →
s = [inl (start_symbol (g_
at g1 g2))℄ ∨
∃ s1: sf1,
∃ s2: sf2,
s =(map g_
at_sf_lift1 s1)++(map g_
at_sf_lift2 s2) ∧
generates g1 s1 ∧ generates g2 s2.
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Closure Properties

Con
atenation

Proofs Outline

◮
Both the 
orre
tness and the 
ompleteness proofs are 
onstru
ted by

indu
tion on the indu
tive de�nition derives, with extensive 
ase

analysis.

◮
Equivalent statements were proved using 
ontext-free languages

instead of 
ontext-free grammars:

Indu
tive l_
at (l1 l2: lang terminal): lang terminal:=

| l_
at_app: ∀ s1 s2: senten
e,

l1 s1 → l2 s2 → l_
at l1 l2 (s1 ++s2).

Theorem l_
at_is_
fl:

∀ l1 l2: lang terminal,


fl l1 → 
fl l2 → 
fl (l_
at l1 l2).
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Closure Properties

Kleene Star

De�nitions

Constru
t g2 su
h that L(g2) = (L(g1))
∗
:

Indu
tive g_
lo_nt (non_terminal : Type): Type :=

| Start_
lo : g_
lo_nt

| Transf_
lo_nt : non_terminal→ g_
lo_nt.

Definition g_
lo (g: 
fg non_terminal terminal):

(non_terminal terminal : Type)

(g: 
fg g_
lo_nt terminal):=

{| start_symbol:= Start_
lo;

rules:= g_
lo_rules g;

rules_finite:= g_
lo_finite g |}.
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Closure Properties

Kleene Star

De�nitions

Indu
tive g_
lo_rules

(non_terminal terminal : Type)

(g: 
fg non_terminal terminal)

: g_
lo_nt→ sf
 → Prop :=

| New1_
lo:

g_
lo_rules g Start_
lo ([inl Start_
lo℄ ++

[inl (Transf_
lo_nt (start_symbol g))℄)

| New2_
lo:

g_
lo_rules g Start_
lo [℄

| Lift_
lo:

∀ nt: non_terminal,
∀ s: sf,

rules g nt s →
g_
lo_rules g (Transf_
lo_nt nt) (map g_
lo_sf_lift s).
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Closure Properties

Kleene Star

Corre
tness

∀g1, s1, s2, (S2 ⇒∗

g2
ǫ) ∧ ((S2 ⇒∗

g2
s2) ∧ (S1 ⇒∗

g1
s1)→ S2 ⇒∗

g2
s2 · s1)

Theorem g_
lo_
orre
t:

∀ g: 
fg non_terminal terminal,

∀ s: sf,

∀ s': sf
,

generates (g_
lo g) nil ∧
(generates (g_
lo g) s' ∧ generates g s →
generates (g_
lo g) (s'++ map g_
lo_sf_lift s)).
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Closure Properties

Kleene Star

Completeness

∀s2, (S2 ⇒∗

g2
s2)→ (s2 = ǫ) ∨ (∃s1, s′2 | (s2 = s′2 · s1) ∧ (S2 ⇒∗

g2

s′2) ∧ (S1 ⇒∗

g1
s1))

Theorem g_
lo_
orre
t_inv:

∀ g: 
fg non_terminal terminal,

∀ s: sf
,

generates (g_
lo g) s →
(s=[℄) ∨
(s=[inl (start_symbol (g_
lo g))℄) ∨
(∃ s': sf
,

∃ s'': sf,

generates (g_
lo g) s' ∧ generates g s'' ∧ s=s' ++map g_
lo_sf_lift s'').
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Closure Properties

Kleene Star

Proofs Outline

◮
The 
orre
tness proof is straightforward and are obtained dire
tly from

the de�nition of the 
orresponding grammars;

◮
The 
ompleteness proofs is more 
ompli
ated, and are 
onstru
ted by

indu
tion on the indu
tive de�nition derives, with extensive 
ase

analysis.

◮
Equivalent statements were proved using 
ontext-free languages

instead of 
ontext-free grammars:

Indu
tive l_
lo (l: lang terminal): lang terminal:=

| l_
lo_nil: l_
lo l [℄

| l_
lo_app: ∀ s1 s2: senten
e,

(l_
lo l) s1 → l s2 → l_
lo l (s1 ++s2).

Theorem l_
lo_is_
fl:

∀ l: lang terminal, 
fl l → 
fl (l_
lo l).
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Grammar Simpli�
ation

Overview

Grammar simpli�
ation aims at obtaining new and simpler grammars that

are equivalent to the original ones:

◮
Simpler means:

◮
They 
ontain only symbols and rules that are e�e
tively used in the

derivation of some senten
e;

◮
They do not 
ontain unit rules (e.g. A→ B);

◮
They do not 
ontain empty rules (e.g. A→ ǫ), ex
ept for a spe
ial


ase.

◮
Equivalent means that they generate the same language.

Important to redu
e the 
omplexity of grammars and thus (i) simplify its

understanding, in
rease the e�
ien
y of parsers obtained from them and

(iii) allow their normalization.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 98 / 144



Grammar Simpli�
ation

Elimination of empty rules

Con
ept

◮
An empty rule r ∈ P is a rule whose right-hand side β is empty (e.g.

X → ǫ);

◮
We formalize that for all G, there exists G′

su
h that L(G) = L(G′)
and G′

has no empty rules, ex
ept for a single rule S → ǫ if ǫ ∈ L(G);
in this 
ase, S (the initial symbol of G′

) does not appear on the

right-hand side of any rule in G′
.
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Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Definition empty

(g: 
fg terminal _) (s: non_terminal + terminal): Prop:=

derives g [s℄ [℄.

Indu
tive non_terminal': Type:=

| Lift_nt: non_terminal→ non_terminal'

| New_ss.

Definition g_emp

(non_terminal terminal : Type)

(g: 
fg non_terminal terminal)

: 
fg non_terminal' terminal :=

{| start_symbol:= New_ss;

rules:= g_emp_rules g;

rules_finite:= g_emp_finite g |}.
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Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Indu
tive g_emp_rules

(non_terminal terminal : Type)

(g: 
fg non_terminal terminal)

: non_terminal' → sf' → Prop :=

| Lift_dire
t :

∀ left: non_terminal,
∀ right: sf,
right 6= [℄ → rules g left right →
g_emp_rules g (Lift_nt left) (map symbol_lift right)
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Grammar Simpli�
ation

Elimination of empty rules

De�nitions

| Lift_indire
t:

∀ left: non_terminal,
∀ right: sf,
g_emp_rules g (Lift_nt left) (map symbol_lift right)→
∀ s1 s2: sf,

∀ s: non_terminal,

right = s1 ++(inl s) :: s2 →
empty g (inl s) →
s1 ++s2 6= [℄ →
g_emp_rules g (Lift_nt left) (map symbol_lift (s1 ++s2))

| Lift_start_emp:

g_emp_rules g New_ss [inl (Lift_nt (start_symbol g))℄.
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Grammar Simpli�
ation

Elimination of empty rules

Example

Suppose that X,A,B,C are non-terminals, of whi
h A,B and C are

nullable, a, b and c are terminals and X → aAbBcC is a rule of g. Then,

the above de�nitions assert that X → aAbBcC is a rule of g_emp g, and

also:

◮ X → aAbBc;

◮ X → abBcC;

◮ X → aAbcC;

◮ X → aAbc;

◮ X → abBc;

◮ X → abcC;

◮ X → abc.
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Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Definition g_emp'

(non_terminal terminal : Type)

(g: 
fg non_terminal terminal)

: 
fg (non_terminal' _) terminal :=

{| start_symbol:= New_ss _;

rules:= g_emp'_rules g;

rules_finite:= g_emp'_finite g |}.
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Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Indu
tive g_emp'_rules

(non_terminal terminal : Type)

(g: 
fg non_terminal terminal)

: non_terminal' non_terminal→ sf' → Prop :=

| Lift_all:

∀ left: non_terminal' _,
∀ right: sf',
rules (g_emp g) left right → g_emp'_rules g left right

| Lift_empty:

empty g (inl (start_symbol g)) →
g_emp'_rules g (start_symbol (g_emp g)) [℄.
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Grammar Simpli�
ation

Elimination of empty rules

Corre
tness

Theorem g_emp'_
orre
t:

∀ g: 
fg non_terminal terminal,

g_equiv (g_emp' g) g ∧
(generates_empty g → has_one_empty_rule (g_emp' g)) ∧
(∼ generates_empty g → has_no_empty_rules (g_emp' g)) ∧
start_symbol_not_in_rhs (g_emp' g).
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Grammar Simpli�
ation

Elimination of empty rules

Proof Outline

The de�nition of g_equiv, when applied to the previous theorem, yields:

∀ s: senten
e,

produ
es (g_emp' g) s ↔ produ
es g s.

◮
For the → part, the strategy is to prove that for every rule

left→g_emp′ right, either left→g right is a rule of g or

left⇒∗

g right;

◮
For the ← part, the strategy is a more 
ompli
ated one, and involves

indu
tion over the number of derivation steps in g.
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Grammar Simpli�
ation

Elimination of unit rules

Con
ept

◮
A unit rule r ∈ P is a rule whose right-hand side β 
ontains a single

non-terminal symbol (e.g. X → Y );

◮
We formalize that for all G, there exists G′

su
h that L(G) = L(G′)
and G′

has no unit rules.
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Grammar Simpli�
ation

Elimination of unit rules

De�nitions

Indu
tive unit

(terminal non_terminal : Type)

(g: 
fg terminal non_terminal)

(a: non_terminal)

: non_terminal→ Prop:=

| unit_rule:

∀ (b: non_terminal),

rules g a [inl b℄ → unit g a b

| unit_trans:

∀ b 
: non_terminal,

unit g a b → unit g b 
 → unit g a 
.
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Grammar Simpli�
ation

Elimination of unit rules

De�nitions

Definition g_unit

(terminal non_terminal : Type)

(g: 
fg non_terminal terminal)

: 
fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_unit_rules g;

rules_finite:= g_unit_finite g |}.
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Grammar Simpli�
ation

Elimination of unit rules

De�nitions

Indu
tive g_unit_rules

(terminal non_terminal : Type)

(g: 
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_dire
t' :

∀ left: non_terminal,
∀ right: sf,
(∀ r: non_terminal, right 6= [inl r℄) →
rules g left right →
g_unit_rules g left right
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Grammar Simpli�
ation

Elimination of unit rules

De�nitions

| Lift_indire
t':

∀ a b: non_terminal,

unit g a b →
∀ right: sf,
rules g b right →
(∀ 
: non_terminal, right 6= [inl 
℄) →
g_unit_rules g a right.
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Grammar Simpli�
ation

Elimination of unit rules

Example

Suppose that N = {S′,X, Y, Z}, Σ = {a, b, c} and
P = {S′ → X,X → aX,X → Y, Y → XbY, Y → Z,Z → c}. The
previous de�nitions assert that P ′

has the following rules:

◮ S′ → aX;

◮ S′ → XbY ;

◮ S′ → c;

◮ X → aX;

◮ X → XbY ;

◮ X → c;

◮ Y → XbY ;

◮ Y → c;

◮ Z → c
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Grammar Simpli�
ation

Elimination of unit rules

Corre
tness

Theorem g_unit_
orre
t:

∀ g: 
fg non_terminal terminal,

g_equiv (g_unit g) g ∧ has_no_unit_rules (g_unit g).
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Grammar Simpli�
ation

Elimination of unit rules

Proof Outline

Consider g_equiv (g_unit g) g of the previous statement:

◮
For the → part, the strategy adopted is to prove that for every rule

left→g_unit right of (g_unit g), either left→g right is a rule of g

or left⇒∗

g right;

◮
For the ← part, the strategy is also a more 
ompli
ated one, and

involves indu
tion over a predi
ate that is equivalent to derives

(derives3), but generates the senten
e dire
tly without 
onsidering the

appli
ation of a sequen
e of rules, whi
h allows one to abstra
t the

appli
ation of unit rules in g.
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Grammar Simpli�
ation

Elimination of useless symbols

Con
ept

◮
A symbol s ∈ V is useful if it is possible to derive a senten
e from it

using the rules of the grammar. Otherwise, s is 
alled an useless

symbol;

◮
A useful symbol s is one su
h that s⇒∗ ω, with ω ∈ Σ∗

;

◮
We formalize that, for all G su
h that L(G) 6= ∅, there exists G′

su
h

that L(G) = L(G′) and G′
has no useless symbols.
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Grammar Simpli�
ation

Elimination of useless symbols

De�nitions

Definition useful

(terminal non_terminal : Type)

(g: 
fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

mat
h s with

| inr t ⇒ True

| inl n ⇒ ∃ s: senten
e, derives g [inl n℄ (map term_lift s)

end.
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Grammar Simpli�
ation

Elimination of useless symbols

De�nitions

Definition g_use

(terminal non_terminal : Type)

(g: 
fg non_terminal terminal)

: 
fg non_terminal terminal:=

{| start_symbol:= start_symbol g;

rules:= g_use_rules g;

rules_finite:= g_use_finite g |}.
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Grammar Simpli�
ation

Elimination of useless symbols

De�nitions

Indu
tive g_use_rules

(terminal non_terminal : Type)

(g: 
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_use :

∀ left: non_terminal,
∀ right: sf,
rules g left right →
useful g (inl left) →
(∀ s: non_terminal + terminal, In s right → useful g s) →
g_use_rules g left right.
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Grammar Simpli�
ation

Elimination of useless symbols

Corre
tness

Theorem g_use_
orre
t:

∀ g: 
fg non_terminal terminal,

non_empty g → g_equiv (g_use g) g ∧ has_no_useless_symbols (g_use g).
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Grammar Simpli�
ation

Elimination of useless symbols

Proof Outline

Consider g_equiv (g_use g) g of the previous statement:

◮
The → part of the g_equiv proof is straightforward, sin
e every rule

of g_use is also a rule of g;

◮
For the 
onverse, it is ne
essary to show that every symbol used in a

derivation of g is useful, and thus all the rules used in this derivation

also appear in g_use.
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Grammar Simpli�
ation

Elimination of ina

essible symbols

Con
ept

◮
A symbol s ∈ V is a

essible if it is part of at least one string

generated from the root symbol of the grammar. Otherwise, it is


alled an ina

essible symbol;

◮
An a

essible symbol s is one su
h that S ⇒∗ αsβ, with α, β ∈ V ∗

;

◮
We formalize that for all G, there exists G′

su
h that L(G) = L(G′)
and G′

has no ina

essible symbols.
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Grammar Simpli�
ation

Elimination of ina

essible symbols

De�nitions

Definition a

essible

(terminal non_terminal : Type)

(g : 
fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

∃ s1 s2: sf, derives g [inl (start_symbol g)℄ (s1 ++s :: s2).
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Grammar Simpli�
ation

Elimination of ina

essible symbols

De�nitions

Definition g_a



(terminal non_terminal : Type)

(g : 
fg non_terminal terminal)

: 
fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_a

_rules g;

rules_finite:= g_a

_finite g |}.
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Grammar Simpli�
ation

Elimination of ina

essible symbols

De�nitions

Indu
tive g_a

_rules

(terminal non_terminal : Type)

(g : 
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_a

 : ∀ left: non_terminal,
∀ right: sf,
rules g left right → a

essible g (inl left) →
g_a

_rules g left right.
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Grammar Simpli�
ation

Elimination of ina

essible symbols

Corre
tness

Theorem g_a

_
orre
t:

∀ g: 
fg non_terminal terminal,

g_equiv (g_a

 g) g ∧ has_no_ina

essible_symbols (g_a

 g).
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Grammar Simpli�
ation

Elimination of ina

essible symbols

Proof Outline

Consider g_equiv (g_a

 g) g of the previous statement:

◮
The → part of the g_equiv proof is also straightforward, sin
e every

rule of g_a

 is also a rule of g;

◮
For the 
onverse, it is ne
essary to show that every symbol used in the

derivation of g is a

essible, and thus the rules used in this derivation

also appear in g_a

.
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Grammar Simpli�
ation

Uni�
ation

All in the Same Grammar

Theorem g_simpl:

∀ g: 
fg non_terminal terminal,

non_empty g →
∃ g': 
fg (non_terminal' non_terminal) terminal,

g_equiv g' g ∧
has_no_ina

essible_symbols g' ∧
has_no_useless_symbols g' ∧
(generates_empty g → has_one_empty_rule g') ∧
(∼ generates_empty g → has_no_empty_rules g') ∧
has_no_unit_rules g' ∧
start_symbol_not_in_rhs g'.
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Grammar Simpli�
ation

Uni�
ation

Proof Outline

Requires the proof that 
ertain operations preserve some properties of the

original grammar:
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Chomsky Normal Form

Con
ept

∀G = (V,Σ, P, S),

∃G′ = (V ′,Σ, P ′, S′) |

L(G) = L(G′)∧

∀(α→ β) ∈ P ′, (β ∈ Σ) ∨ (β ∈ N ·N)

Important for:

◮
De
idability of the membership problem ;

◮
Some parsing algorithms (e.g. CYK);

◮
Pumping Lemma.
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Chomsky Normal Form

Example

As an example, 
onsider G = ({S′,X, Y, Z, a, b, c}, {a, b, c}, P, S′) with P

equal to:

{S′ → XY Zd,

X → a,

Y → b,

Z → c, }
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Chomsky Normal Form

Example

The CNF grammar G′
, equivalent to G, would then be the one with the

following set of rules:

{S′ → X[Y Zd],

[Y Zd] → Y [Zd],

[Zd] → Z[d],

[d] → d,

X → a,

Y → b,

Z → c, }
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Chomsky Normal Form

De�nitions

Indu
tive non_terminal' (non_terminal terminal : Type): Type:=

| Lift_r: sf → non_terminal'.

Definition g_
nf

(non_terminal terminal : Type)

(g: 
fg non_terminal terminal)

: 
fg non_terminal' terminal :=

{| start_symbol:= Lift_r [inl (start_symbol g)℄;

rules:= g_
nf_rules g;

rules_finite:= g_
nf_finite g |}.
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Chomsky Normal Form

De�nitions

Indu
tive g_
nf_rules

(non_terminal terminal : Type)

(g: 
fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_
nf_t:

∀ t: terminal,

∀ left: non_terminal,
∀ s1 s2: sf,

rules g left (s1++[inr t℄++s2) →
g_
nf_rules g (Lift_r [inr t℄) [inr t℄

| Lift_
nf_1:

∀ left: non_terminal,
∀ t: terminal,

rules g left [inr t℄ →
g_
nf_rules g (Lift_r [inl left℄) [inr t℄
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Chomsky Normal Form

De�nitions

| Lift_
nf_2:

∀ left: non_terminal,
∀ s1 s2: symbol,

∀ beta: sf,
rules g left (s1 :: s2 :: beta) →
g_
nf_rules g (Lift_r [inl left℄)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: beta))℄

| Lift_
nf_3:

∀ left: sf,
∀ s1 s2 s3: symbol,

∀ beta: sf,
g_
nf_rules g (Lift_r left)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: s3 :: beta))℄ →
g_
nf_rules g (Lift_r (s2 :: s3 :: beta))

[inl (Lift_r [s2℄); inl (Lift_r (s3 :: beta))℄.
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Chomsky Normal Form

De�nitions

Definition g_
nf'

(non_terminal terminal : Type)

(g: 
fg non_terminal terminal)

: 
fg non_terminal' terminal:=

{| start_symbol:= start_symbol (g_
nf g);

rules:= g_
nf'_rules g;

rules_finite:= g_
nf'_finite g |}.
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Chomsky Normal Form

De�nitions

Indu
tive g_
nf'_rules

(non_terminal terminal : Type)

(g: 
fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_
nf'_all:

∀ left: non_terminal',
∀ right: sf',
g_
nf_rules g left right →
g_
nf'_rules g left right

| Lift_
nf'_new:

g_
nf'_rules g (start_symbol (g_
nf g)) [℄.
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Chomsky Normal Form

Corre
tness

Theorem g_
nf_final:

∀ g: 
fg non_terminal terminal,

(produ
es_empty g ∨ ∼ produ
es_empty g) ∧
(produ
es_non_empty g ∨ ∼ produ
es_non_empty g) →
∃ g': 
fg non_terminal' terminal,

g_equiv g' g ∧
(is_
nf g' ∨ is_
nf_with_empty_rule g') ∧
start_symbol_not_in_rhs g'.
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Chomsky Normal Form

Proof Outline

The proof of this theorem requires, among other things, that the original

grammar is �rst simpli�ed a

ording to the results dis
ussed in the previous

se
tion.

◮
For the ← part of g_equiv, the strategy adopted is to prove that for

every rule left→ right of g, either left→ right is a rule of g_
nf

g or left⇒∗ right in g_
nf g;

◮
For the → part, that is, (s1 ⇒∗

g_cnfg s2)→ (s1 ⇒∗

g s2), it is enough

to note that the sentential forms of g are embedded in the sentential

forms of g_
nf g, spe
i�
ally in the arguments of the 
onstru
tor

Lift_r of non_terminal'. Thus, a simple extra
tion me
hanism

allows the impli
ation to be proved by indu
tion on the stru
ture of

the sentential form s1.
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Pumping Lemma

Con
ept

∀L, 
ontext-free (L)→

∃n | ∀s, (s ∈ L) ∧ (|s| ≥ n)→

(s = uvwxy) ∧ (|vx| > 0) ∧ (|vwx| ≤ n) ∧ (∀i, uviwxiy ∈ L)

◮
A property of all 
ontext-free languages;

◮
States that from 
ertain strings of the language it is possible to

generate an in�nite number of other strings that also belong to the

language;

◮
Is used to prove that 
ertain languages are not 
ontext-free;

◮
Explores the �niteness of the number of non-terminals, in parti
ular in

the CNF grammar, and makes extensive use of (binary) trees.
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Con
lusions

Computers and mathemati
s

◮
Pra
titioners base is still small;

◮
Learning 
urve grows (very) slowly;

◮
Advantages of formalization are immense;

◮
Important industrial proje
ts;

◮
Important theoreti
al works;

◮
Disadvantages are being gradually eliminated;

◮
The trend is 
learly set.
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Con
lusions

This Formalization

◮
Comprehensive set of fundamental results on 
ontext-free language

theory;

◮
First formalization in Coq (preliminary work by Filliâtre);

◮
First formalization at all of the Pumping Lemma;

◮
Framework to advan
e with the formalization of CFLs and related

theories.
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Con
lusions

Plans for the Future

◮
Obtain the degree (deadline Feb/2016);

◮
Promote Coq and mathemati
al formalization through spee
hs,

workshops and other a
ademi
 a
tivities;

◮
Continue the formalization:

◮
SSRre�e
t;

◮
Code extra
tion and 
erti�ed algorithms;

◮
Pushdown automata and other results of CFLs.

◮
Keep learning Coq!
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Con
lusions

Computers and mathemati
s

◮
Not easy, but very rewarding;

◮
Hope you have enjoyed;

◮
Ask me if you want referen
es;

◮
Write me if you have questions or suggestions;

◮
Let me know you if plan to work in this area.

Thank you!
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