
Formalization of Context-Free Language Theory

Mar
us Viní
ius Midena Ramos

(PhD student - UFPE, Re
ife, Brazil)

Ruy J. G. B. de Queiroz (Advisor - UFPE, Re
ife, Brazil)

Nelma Moreira (Supervisor - UP, Porto, Portugal)

José Carlos Ba
elar Almeida (Supervisor - UM, Braga, Portugal)

Universidade do Porto

Departamento de Ciên
ia de Computadores, Fa
uldade de Ciên
ias

Porto, Portugal

July 10th, 2015

mvmr�
in.ufpe.br

(12 de setembro de 2015, 10:50)

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 1 / 144

Introdu
tion

Pro�le

◮
Ele
troni
s Engineering at Universidade de São Paulo in 1982;

◮
M.S
. in Digital Systems at Universidade de São Paulo in 1991;

◮
Tea
hing experien
e with programming languages,
ompilers, formal

languages, automata theory and
omputation theory sin
e 1991;

◮
Professional experien
e from 1983 to 1999 (software development,

produ
t management, marketing, retail, fran
hising, human resour
es,

IT management);

◮
Current position at UNIVASF (Universidade Federal do Vale do São

Fran
is
o) in Petrolina-PE/Juazeiro-BA sin
e April/2008;

◮
PhD student at UFPE (Universidade Federal de Pernambu
o) sin
e

February/2011;

◮
Full dedi
ation sin
e July/2013.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 2 / 144

Introdu
tion

Lo
ation

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 3 / 144

Introdu
tion

Lo
ation

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 4 / 144

Introdu
tion

So...

◮
Formalization?

◮
Context-Free Language Theory?

◮
Why?

◮
How?

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 5 / 144

Introdu
tion

S
ope

The obje
tive of this work is to formalize a substantial part of
ontext-free

language theory in the Coq proof assistant, making it possible to reason

about it in a fully
he
ked environment, with all the related advantages.

◮
Formalization is the pro
ess of writing proofs su
h that they have a

pre
ise meaning over a simple and well-de�ned
al
ulus whose rules

an be automati
ally
he
ked by a ma
hine;

◮
Context-free language theory is fundamental in the representation and

study of arti�
ial languages, spe
ially programming languages, and in

the
onstru
tion of their pro
essors (
ompilers and interpreters);

◮
The formalization of
ontext-free language theory is a key to the

erti�
ation of
ompilers and programs, as well as to the development

of new languages and tools for
erti�ed programming.

More on the next slides.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 6 / 144

Introdu
tion

Summary

1

Introdu
tion

2

Formal Mathemati
s

3

Proof Assistants

4

Coq

5

Formalization Proje
ts

6

Context-Free Language Theory

7

General Pi
ture

8

Basi
 De�nitions

9

Closure Properties

10

Grammar Simpli�
ation

11

Chomsky Normal Form

12

Pumping Lemma

13

Con
lusions

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 7 / 144

Formal Mathemati
s

General Pi
ture

◮
�Informal� mathemati
s:

◮
Levels of abstra
tion may hide errors di�
ult to tra
e;

◮
Non-uniform notation is also a problem.

◮
Formalization (�
omputer en
oded mathemati
s�) is a
lear trend

towards theoreti
al development and theory representation;

◮
Computer-aided reasoning and use of proof assistants (intera
tive

theorem provers);

◮
Me
hanized
he
king of proofs (and programs), enabling:

◮
Che
king of every reasoning step against the inferen
e rules of the

underlying logi
;

◮
Uniform notation.

◮
Advantages:

◮
Less e�ort and time;

◮
Improved reliability.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 8 / 144

Formal Mathemati
s

Software Development

◮
Theorem proofs:

◮
Informal;

◮
Di�
ult to build;

◮
Di�
ult to
he
k.

◮
Computer programs:

◮
Informal;

◮
Di�
ult to build;

◮
Di�
ult to test.

◮
Coin
iden
e?

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 9 / 144

Formal Mathemati
s

Software Development

◮
NOT REALLY, as theorem proving and software development have

essentially the same nature;

◮
A

ording to the Curry-Howard Isomorphism, to develop a program is

the same as to prove a theorem, and vi
e-versa;

◮
Exploring this similarity his
an be bene�
ial to both a
tivities:

◮
Reasoning
an be brought into programming, and

◮
Computational ideas
an be used in theorem proving.

◮
How to improve both then?

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 10 / 144

Formal Mathemati
s

Perspe
tives

◮
Formalization (�
omputer en
oded mathemati
s�) is the answer;

◮
Computer-aided reasoning;

◮
Use of proof assistants, also known as intera
tive theorem provers.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 11 / 144

Formal Mathemati
s

Ba
kground

Required before starting to use Coq:

◮
Natural Dedu
tion;

◮
Untyped Lambda Cal
ulus;

◮
Typed Lambda Cal
ulus;

◮
Curry-Howard Isomorphism;

◮
Type Theory;

◮
Constru
tivism and BHK;

◮
Martin Löf's Intuitionisti
 Type Theory;

◮
Cal
ulus of Constru
tions with Indu
tive De�nitions.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 12 / 144

Formal Mathemati
s

Ba
kground

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 13 / 144

Formal Mathemati
s

Natural Dedu
tion

◮
Cal
ulus for theorem proving;

◮
Part of Proof Theory;

◮
Based in simple inferen
e rules that resemble the rules of natural

thinking;

◮
Ea
h
onne
tive is asso
iated to introdu
tion and elimination rules;

◮
The proof of a theorem (proposition) is a stru
tured sequen
e of

inferen
e rules that validate the
on
lusion, usually without depending

on any hypothesis;

◮
The proof is represented as a tree;

◮
Gentzen (1935) and Prawitz (1965);

◮
Originally developed for propositional logi
, was later extended for

predi
ate logi
.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 14 / 144

Formal Mathemati
s

Untyped Lambda Cal
ulus

Formal system used for the representation of
omputations.

◮
Based on the de�nition and appli
ation of fun
tions;

◮
Fun
tions are treated as higher-order obje
ts, as they
an be passed as

arguments and returned as values from other fun
tions;

◮
Simpli
ity: only two
onstru
ts (�
ommands�);

◮
Allows the
ombination of basi
 fun
tions in the
reation of more

omplex fun
tions;

◮
Even in the pure version (without
onstants), allows the representation

of a broad range of datatypes, in
luding booleans, natural numbers,

integers et
, and operations on their values.

◮
Untyped and typed versions.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 15 / 144

Formal Mathemati
s

Untyped Lambda Cal
ulus

◮
Alonzo Chur
h, 1903-1995, United States;

◮
Invented the Lambda Cal
ulus in the 1930s;

◮
Result of his investigations about the foundations of mathemati
s;

◮
Intended to formalize mathemati
s through the notion of fun
tions,

instead of the notion of sets;

◮
Although he did not su

eed in this obje
tive, his work was of great

importante in other areas, spe
ially in
omputer s
ien
e.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 16 / 144

Formal Mathemati
s

Untyped Lambda Cal
ulus

Mathemati
al model for:

◮
Theory, spe
i�
ation and implementation of programming languages,

spe
ially the fun
tional ones.

◮
Program veri�
ation;

◮
Representation of
omputable fun
tions;

◮
Computability theory;

◮
Proof theory.

Was used in the demonstration of the unde
idability of various problems,

even before the ma
hine-based formalisms (e.g. Turing Ma
hine).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 17 / 144

Formal Mathemati
s

Typed Lambda Cal
ulus

◮
Created by Chur
h to avoid the in
onsisten
ies of the untyped version;

◮
Type tags are asso
iated to lambda terms;

◮
Variables have base types (x : σ);

◮
Abstra
tions and appli
ations
reate new types a

ordingly;

◮
Types must mat
h;

◮
Less powerful model of
omputation;

◮
Type systems for programming languages;

◮
Equality of terms is de
idable;

◮
Strongly normalizing (all
omputations terminate);

◮ (λx.xx)(λx.xx) and (λx.xxy)(λx.xxy) are not terms of the typed

lambda
al
ulus.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 18 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

Mathemati
s is all about:

◮
Reasoning;

◮
Computing.

For long time
onsidered as separate areas; even today, ignored by many.

Any relation there?

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 19 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

YES, a

ording to the Curry-Howard Isomorphism.

◮
There is a dire
t relationship between reasoning (as expressed by

�rst-order logi
 and natural dedu
tion) and
omputing (as expressed

by the typed lambda
al
ulus);

◮
Proofs-as-programs or Propositions-as-types notions;

◮
First observed by (Haskell) Curry in 1934, later developed and

extended by Curry in 1958 and William Howard in 1969;

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 20 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

◮
This has many important
onsequen
es as is the basis of modern

software development and
omputer assisted theorem proo�ng:

◮
Reasoning prin
iples and te
hniques
an be brought into software

development;

◮
Computing (idem)
an be used in theorem proving.

◮
In the simply typed lambda
al
ulus, the fun
tion operator (→)

orresponds to the impli
ation
onne
tive (⇒);
orresponden
es also

exist for other operators.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 21 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

General pi
ture:

Proofs Theorems

Programs Types

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 22 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

Proofs & Theorems

First of all:

Proofs ⇔ Theorems

Programs Types

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 23 / 144

Formal Mathemati
s

Proofs & Theorems

Example

Proof:

a⇒ (b⇒ c) a
(⇒ E)

b⇒ c b
(⇒ E)c

(⇒ I)a⇒ c
(⇒ I)

b⇒ (a⇒ c)
(⇒ I)

(a⇒ (b⇒ c))⇒ (b⇒ (a⇒ c))

Theorem:

(a⇒ (b⇒ c))⇒ (b⇒ (a⇒ c))

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 24 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

Programs & Types

Also:

Proofs Theorems

Programs ⇔ Types

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 25 / 144

Formal Mathemati
s

Programs & Types

Example

Program:

x : a→ (b→ c) z : a
(→ E)

xz : b→ c y : b
(→ E)xzy : c

(→ I)
λza.xzy : (a→ c)

(→ I)
λyb.λza.xzy : (b→ (a→ c))

(→ I)

λxa→(b→c).λyb.λza.xzy : (a→ (b→ c))→ (b→ (a→ c))

Type:

(a→ (b→ c))→ (b→ (a→ c))

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 26 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

Theorems & Types

Next, it is easy to observe that:

Proofs

Theorems

m

Programs

Types

Types (spe
i�
ations) and Theorems (propositions) share the same

synta
ti
 stru
ture.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 27 / 144

Formal Mathemati
s

Theorems & Types

Example

Type or theorem?

Type:

(a→ (b→ c))→ (b→ (a→ c))

Theorem:

(a⇒ (b⇒ c))⇒ (b⇒ (a⇒ c))

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 28 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

The Isomorphism

Logi
 Typed lambda
al
ulus

⇒ (impli
ation) → (fun
tion type)

∧ (and) × (produ
t type)

∨ (or) + (sum type)

∀ (forall) Π (pi type)

∃ (exists) Σ (sigma type)

⊤ unit type

⊥ bottom type

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 29 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

Proofs & Programs

Finally, the isomorphism extends to:

Proofs

Theorems

m
Programs

Types

One
an be obtained dire
tly from the other:

◮
From Proof to Program: by adding the terms with the
orresponding

types;

◮
From Program to Proof: by eliminating the terms and keeping only

the types.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 30 / 144

Formal Mathemati
s

Proofs & Programs

Example

Proof:

a ⇒ (b ⇒ c) a
(⇒ E)

b ⇒ c b
(⇒ E)c

(⇒ I)a ⇒ c
(⇒ I)

b ⇒ (a ⇒ c)
(⇒ I)

(a ⇒ (b ⇒ c)) ⇒ (b ⇒ (a ⇒ c))

Program:

x : a → (b → c) z : a
(→ E)

xz : b → c y : b
(→ E)

xzy : c
(→ I)

λza.xzy : (a → c)
(→ I)

λyb.λza.xzy : (b → (a → c))
(→ I)

λxa→(b→c).λyb.λza.xzy : (a → (b → c)) → (b → (a → c))

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 31 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

Consequen
es

◮
To build a program that satis�es a spe
i�
ation (type):

◮
Interpret the spe
i�
ation as a theorem (proposition);

◮
Build a proof tree for this theorem;

◮
Add terms with the
orresponding types.

◮
To build a proof of a theorem:

◮
Interpret the theorem as a spe
i�
ation;

◮
Build a program that meets the spe
i�
ation;

◮
Remove the terms from the derivation tree.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 32 / 144

Formal Mathemati
s

Curry-Howard Isomorphism

Consequen
es

Summary:

◮
To build a program is the same as to build a proof;

◮
To build a proof is the same as to build a program;

◮
To verify a program is the same as to verify a proof;

◮
Both veri�
ations
an be done via simple and e�
ient type
he
king

algorithms.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 33 / 144

Formal Mathemati
s

Type Theory

A Type Theory is a theory that allows one to assign types to variables and

onstru
t
omplex type expressions. Then, lambda expressions
an be

derived to meet a
ertain type, or the type of an existing expression
an be

obained by following the theory's inferen
e rules.

◮
Originally developed by Bertrand Russell in the 1910s as a tentative of

�xing the paradoxes of set theory (�is the set
omposed of all sets that

are not members of themselves a member of itself?�);

◮
The Simply Typed Lambda Cal
ulus is a type theory with a single

operator (→) and was developed by Chur
h in the 1940s as a

tentative of �xing the in
onsisten
ies of the untyped lambda
al
ulus;

◮
Sin
e then it has been extended with many new operators;

◮
Various di�erent type theories exist nowadays;

◮
Martin Löf's Intuitionisti
 Type Theory is one of the most important.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 34 / 144

Formal Mathemati
s

Constru
tivism and BHK

◮
Every true proposition must be a

ompanied by a proof of the validity

of the statement; the proof must explain how to build the obje
t that

validates the argument (proposition);

◮
Proposed by Brouwer, Heyting and Kolgomorov, the BHK

interpretation leaves behind the idea of the truth values of Tarski;

◮ x : σ is interpreted as x is a proof of σ;

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 35 / 144

Formal Mathemati
s

Constru
tivism and BHK

A proof of...

◮ a⇒ b is a mapping that
reates a proof of b from a proof of a

(fun
tion);

◮ a ∧ b is a proof of a together with a proof of b (pair);

◮ a ∨ b is a proof of a or a proof of b together with an indi
ation of the

sour
e (pair);

◮ ∀x : A.P (x) is a mapping that
reates a proof of P (t) for every t in A

(fun
tion);

◮ ∃x : A.P (x) is an obje
t t in A together with a proof of P (t) (pair).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 36 / 144

Formal Mathemati
s

Constru
tivism and BHK

◮
Constru
tivism does not use the Law of the Ex
luded Middle (p ∨ ¬p)
or any of its equivalents, that belong to
lassi
 logi
 only:

◮
Double negation ¬(¬p)⇒ p;

◮
Proof by
ontradi
tion (¬a⇒ b) ∧ (¬a⇒ ¬b)⇒ a;

◮
Peir
e's Law ((p⇒ q)⇒ p)⇒ p.

◮
A
onstru
tive proof is said to have
omputational
ontent, as it is

possible to �
onstru
t� the obje
t that validates the proposition (the

proof is a re
ipe for building this obje
t);

◮
A
onstru
tive proof enables (
omputer)
ode extra
tion from proofs,

thus the interest for it in
omputer s
ien
e.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 37 / 144

Formal Mathemati
s

Constru
tivism

A

ording to Troelstra:

�... the insisten
e that mathemati
al obje
ts are to be
onstru
ted

(mental
onstru
tions) or
omputed; thus theorems asserting the

existen
e of
ertain obje
ts should by their proofs give us the

means of
onstru
ting obje
ts whose existen
e is being asserted.�

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 38 / 144

Formal Mathemati
s

Martin Löf's Intuitionisti
 Type Theory

A
onstru
tive type teory based on:

1

First-order logi
 to represent types and propositions;

2

Typed lambda
al
ulus to represent programs and theorems.

and stru
tured around the Curry-Howard Isomorphism.

◮
It is a powerful theory for sotware development and intera
tive

theorem proving;

◮
Also used as a theory for the foundations of mathemati
s.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 39 / 144

Formal Mathemati
s

Cal
ulus of Constru
tions with Indu
tive De�nitions

A ri
hly typed lambda
al
ulus extended with indu
tive de�nitions.

◮
Cal
ulus of Constru
tions developed by Thierry Coquand;

◮
Constru
tive type theory;

◮
Later extended with indu
tive de�nitions;

◮
Used as the mathemati
al language of the Coq proof assistant

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 40 / 144

Formal Mathemati
s

Cal
ulus of Constru
tions

◮
All logi
al operators (→,∧,∨,¬ and ∃) are de�ned in terms of the

universal quanti�er (∀), using �dependent types�;

◮
Types and programs (terms) have the same synta
ti
al stru
ture;

◮
Types have a type themselves (
alled �Sort�);

◮
Base sorts are �Prop� (the type of propositions) and �Set� (the type

of small sets);

◮ Prop : Type(1), Set : Type(1), Type(i) : Type(i+ 1), i ≥ 1;

◮ S = {Prop, Set, Type(i) | i ≥ 1} is the set of sorts;

◮
Various datatypes
an be de�ned (naturals, booleans et
);

◮
Set of typing and
onversion rules.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 41 / 144

Formal Mathemati
s

Indu
tive De�nitions

Finite de�nition of in�nite sets.

◮
�Constru
tors� de�ne the elements of a set;

◮
Constru
tors
an be base elements of the set;

◮
Constru
tors
an be a fun
tions that takes set elements and return

new set elements.

◮
Manipulation is done via �pattern mat
hing� over the indu
tive

de�nitions.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 42 / 144

Formal Mathemati
s

Indu
tive De�nitions

Booleans

{false,true}

Indu
tive boolean:

| false: boolean

| true: boolean.

Variable x: boolean.

Definition f: boolean:= false.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 43 / 144

Formal Mathemati
s

Indu
tive De�nitions

Naturals

{0, 1, 2, 3, ...} = {O, SO, SSO, SSSO, ...}

Indu
tive nat:=

| O: nat

| S: nat->nat.

Variable y: nat.

Definition zero: nat:= O.

Definition one: nat:= S O.

Definition two: nat:= S one.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 44 / 144

Formal Mathemati
s

Indu
tive De�nitions

String sets

Indu
tive ss:=

| ss_empty: ss

| ss_item: string->ss

| ss_build: string->ss->ss.

Variable z: ss.

Definition ss0: ss:= ss_empty.

Definition ss1: ss:= ss_item "ab
".

Definition ss2: ss:= ss_build "def" (ss_item "ab
").

Definition ss3: ss:= ss_build "ghi" (

ss_build "def" (ss_item "ab
")).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 45 / 144

Formal Mathemati
s

Indu
tive De�nitions

Pattern mat
hing

Booleans:

Definition negb (x: bool): bool:=

mat
h x with

| false => true

| true => false

end.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 46 / 144

Formal Mathemati
s

Indu
tive De�nitions

Pattern mat
hing

Naturals:

Definition sub (n: nat): nat :=

mat
h n with

| O => O

| S m => m

end.

Fixpoint nat_equal (n1 n2: nat): bool :=

mat
h n1, n2 with

| O, O => true

| S m, S n => nat_equal m n

| O, S n => false

| S m, O => false

end.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 47 / 144

Proof Assistants

Chara
teristi
s

◮
Software tools that assist the user in theorem proving and program

development;

◮
First initiative dates from 1967 (Automath, De Bruijn);

◮
Many provers are available today (Coq, Agda, Mizar, HOL, Isabelle,

Matita, Nuprl...);

◮
Intera
tive;

◮
Graphi
al interfa
e;

◮
Proof/program
he
king;

◮
Proof/program
onstru
tion.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 48 / 144

Proof Assistants

Usage

1

The user writes a statement (proposition) or a type expression

(spe
i�
ation) in the language of the underlying logi
;

2

He
onstru
ts (dire
tly or indire
tly):

◮
A proof of the theorem;

◮
A program (term) that
omplies to the spe
i�
ation.

3

Dire
tly: the proof/term is written in the formal language a

epted by

the assistant;

4

Indire
tly: the proof/term is built with the assistan
e of an intera
tive

�ta
ti
s� language:

5

In either
ase, the assistant
he
ks that the proof/term
omplies to

the theorem/spe
i�
ation.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 49 / 144

Proof Assistants

Che
k and/or
onstru
t

◮
Proof assistants
he
k that proofs/terms are
orre
tly
onstru
ted;

◮
This is done via simple type-
he
king algorithms;

◮
Automated proof/term
onstru
tion might exist is some
ases, to

some extent, but this is not the main fo
us;

◮
Thus the name �proof assistant�;

◮
Automated theorem proo�ng might be pursued, due to �proof

irrelevan
e�;

◮
Automated program development, on the other hand, is unrealisti
.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 50 / 144

Proof Assistants

Main bene�ts

◮
Proofs and programs
an be me
hani
ally
he
ked, saving time and

e�ort and in
reasing reliability;

◮
Che
king is e�
ient;

◮
Results
an be easily stored and retrieved for use in di�erent
ontexts;

◮
Ta
ti
s help the user to
onstru
t proofs/programs;

◮
User gets deeper insight into the nature of his proofs/programs,

allowing further improvement.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 51 / 144

Proof Assistants

Appli
ations

◮
Formalization and veri�
ation of theorems and whole theories;

◮
Veri�
ation of
omputer programs;

◮
Corre
t software development;

◮
Automati
 review of large and
omplex proofs submitted to journals;

◮
Veri�
ation of hardware and software
omponents.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 52 / 144

Proof Assistants

Drawba
ks

◮
Failures in infrastru
ture may de
rease
on�den
e in the results (proof

assistant
ode, language pro
essors, operating system, hardware et
);

◮
Size of formal proofs;

◮
Redu
ed numer of people using proof assistants;

◮
Slowly in
reasing learning
urve;

◮
Resemblan
e of
omputer
ode keeps pure mathemati
ians

uninterested.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 53 / 144

Coq

Overview

◮
Developed by Huet/Coquand at INRIA in 1984;

◮
First version released in 1989, indu
tive types were added in 1991;

◮
Continuous development and in
reasing usage sin
e then;

◮
The underlying logi
 is the Cal
ulus of Constru
tions with Indu
tive

De�nitions;

◮
It is implemented by a typed fun
tional programming with a higher

order logi
 language
alled Gallina;

◮
Intera
tion with the user is via a
ommand language
alled Verna
ular;

◮
Constru
tive logi
 with large standard library and user
ontributions

base;

◮
Extensible environment;

◮
All resour
es freely available from http://
oq.inria.fr/.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 54 / 144

http://coq.inria.fr/

Coq

User session

The proof
an be
onstru
ted dire
tly ou indire
tly.

In the indire
t
ase,

◮
The initial goal is the theorem/spe
i�
ation supplied by the user;

◮
The environment and the
ontext are initially empty;

◮
The appli
ation of a �ta
ti
s� substitutes the
urrent goal for zero ou

more subgoals;

◮
The
ontext
hanges and might in
orporate new hypotheses;

◮
The pro
ess is repeated for ea
h subgoal, until no subgoal remains;

◮
The proof/term is
onstru
ted from the sequen
e of ta
ti
s used.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 55 / 144

Coq

Ta
ti
s usage

◮
Inferen
e rules map premises to
on
lusions;

◮
Forward reasoning is the pro
ess of moving from premises to

on
lusions;

◮
Example: from a proof of a and a proof of b one
an prove a ∧ b;

◮
Ba
kward reasoning is the pro
ess of moving from
on
lusions to

premises;

◮
Example: to prove a ∧ b one has to prove a and also prove b;

◮
Coq uses ba
kward reasoning;

◮
They are implemented by �ta
ti
s�;

◮
A ta
ti
 redu
es a goal to its subgoals, if any, or simply proves the

goal.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 56 / 144

Coq

Certi�ed software development

1

Write the spe
i�
ations as type expressions;

2

Interpret them as theorems;

3

Build the proofs;

4

Let the proof assistant
he
k them;

5

Convert them to
omputer programs using the
ode extra
tion fa
ility.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 57 / 144

Formalization Proje
ts

Introdu
tion

◮
Great and in
reasing interest in formal proof and program

development over the re
ent years;

◮
Main areas in
lude:

◮
Programming language semanti
s formalization;

◮
Mathemati
s formalization;

◮
Edu
ation.

◮
Important proje
ts in both a
ademy and industry;

◮
Top 100 theorems (91% formalized as of July/2015);

◮
Che
k http://www.
s.ru.nl/~freek/100/;

◮
One way road.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 58 / 144

http://www.cs.ru.nl/~freek/100/

Formalization Proje
ts

Four Color Theorem

◮
Stated in 1852, proved in 1976 and again in 1995;

◮
The two proofs used
omputers to a some extent, but were not fully

me
hanized;

◮
In 2005, Georges Gonthier (Mi
rosoft Resear
h) and Benjamin Werner

(INRIA) produ
ed a proof s
ript that was fully
he
ked by a ma
hine;

◮
Milestone in the history of
omputer assisted proo�ng;

◮
60,000 lines of Coq s
ript and 2,500 lemmas;

◮
Byprodu
ts.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 59 / 144

Formalization Proje
ts

Four Color Theorem

�Although this work is purportedly about using
omputer

programming to help doing mathemati
s, we expe
t that most of

its fallout will be in the reverse dire
tion using mathemati
s to

help programming
omputers.�

Georges Gonthier

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 60 / 144

Formalization Proje
ts

Odd Order Theorem

◮
Also known as the Feit-Thomson Theorem;

◮
Important to mathemati
s (in the
lassi�
ation of �nite groups) and

ryptography;

◮
Conje
tured in 1911, proved in 1963;

◮
Formally proved by a team led by Georges Gonthier in 2012;

◮
Six years with full-time dedi
ation;

◮
Huge a
hievement in the history of
omputer assisted proo�ng;

◮
150,000 lines of Coq s
ript and 13,000 theorems;

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 61 / 144

Formalization Proje
ts

Compiler Certi�
ation

◮
CompCert, a fully veri�ed
ompiler for a large subset of C that

generates PowerPC
ode;

◮
Obje
t
ode is
erti�ed to
omply with the sour
e
ode in all
ases;

◮
Appli
ations in avioni
s and
riti
al software systems;

◮
Not only
he
ked, but also developed in Coq;

◮
Three persons-years over a �ve yers period;

◮
42,000 lines of Coq
ode.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 62 / 144

Formalization Proje
ts

Mi
rokernel Certi�
ation

◮
Criti
al
omponent of operating systems, runs in privileged mode;

◮
Harder to test in all situations;

◮
seL4, written in C (10,000 lines), was fully
he
ked in HOL/Isabelle;

◮
No
rash, no exe
ution of any unsafe operation in any situation;

◮
Proof is 200,000 lines long;

◮
11 persons-years,
an go down to 8, 100% overhead over a

non-
erti�ed proje
t.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 63 / 144

Formalization Proje
ts

Digital Se
urity Certi�
ation

◮
JavaCard smart
ard platform;

◮
Personal data su
h as banking,
redit
ard, health et
;

◮
Multiple appli
ations by di�erent
ompanies;

◮
Con�den
e and integrity must be assured;

◮
Formalization of the behaviour and the properties of its
omponents;

◮
Complete
erti�
ation, highest level a
hieved;

◮
INRIA, S
hlumberger and Gemalto.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 64 / 144

Context-Free Language Theory

Overview

◮
Part of Formal Language Theory (Chomsky Hierar
hy):

◮
Regular Languages;

◮
Context-Free Languages;

◮
Context-Sensitive Languages;

◮
Re
ursively Enumerable Languages.

◮
Developed from mid 1950s to late 1970s;

◮
Relevant to the representation, study and implementation of arti�
ial

languages;

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 65 / 144

Context-Free Language Theory

Overview

In
ludes:

◮
Context-free grammars, pushdown automata and notations (e.g.

BNF);

◮
Equivalen
e of grammars and automata;

◮
Grammar simpli�
ation;

◮
Normal forms;

◮
Derivation trees, parsing and ambiguity;

◮
Determinism and non-determinism;

◮
Closure properties;

◮
De
idable and unde
idable problems;

◮
Relation with other language
lasses.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 66 / 144

General Pi
ture

Origins

◮
Experien
e in tea
hing language and automata theory;

◮
Book Linguagens Formais published in 2009 (with J.J. Neto and I.S.

Vega);

◮
Algorithms were used instead of demonstrations for most theorems;

◮
Interest in formalization after studying logi
, lambda
al
ulus, type

theory and Coq;

◮
Desire to follow the lines of the book and formalize its
ontents;

◮
Related work:

◮
Regular languages have already been formalized to a large extend;

◮
Some formalization of
ontext-free languages appeared in re
ent years,

mostly in HOL4 and Agda.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 67 / 144

General Pi
ture

Obje
tives

To formally state and prove the following fundamental results on

ontext-free language theory:

1

Closure properties:

◮
Union;

◮
Con
atenation;

◮
Kleene star.

2

Grammar simpli�
ation:

◮
Elimination of empty rules;

◮
Elimination of unit;

◮
Elimination of useless symbols;

◮
Elimination of ina

essible symbols.

3

Chomsky Normal Form;

4

Pumping Lemma.

Six main theorems.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 68 / 144

General Pi
ture

Current Status

◮
600+ lemmas and theorems, 20+ libraries, 25.000+ lines of s
ripts;

◮
2 year e�ort;

◮
Representation of all relevant obje
ts of the universe of dis
ourse using

indu
tive de�nitions for types and propositions:

◮
Terminal and non-terminal symbol sets;

◮
Senten
e and sentential forms;

◮
Rules;

◮
Context-free grammars;

◮
Derivations;

◮
Trees.

◮
De
larative style;

◮
Closer to textbook de�nitions;

◮
More abstra
t to deal with;

◮
Does not allow for the extra
tion of
erti�ed programs.

◮
Currently �nishing the formalization of the Pumping Lemma.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 69 / 144

Basi
 De�nitions

Context-Free Grammar

G = (V,Σ, P, S), where:

◮ V is the vo
abulary of G;

◮ Σ is the set of terminal symbols;

◮ N = V \ Σ is the set of non-terminal symbols;

◮ P is the set of rules α→ β, with α ∈ N and β ∈ V ∗
;

◮ S ∈ N is the start symbol.

Re
ord
fg (non_terminal terminal : Type): Type:= {

start_symbol: non_terminal;

rules: non_terminal→ sf → Prop;

rules_finite:

∃ n: nat,

∃ ntl: nlist,
∃ tl: tlist,
rules_finite_def start_symbol rules n ntl tl }.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 70 / 144

Basi
 De�nitions

Context-Free Grammar

Making sure that
fg represents a
ontext-free grammar:

◮
General types might have an in�nite number of elements;

◮
We must
he
k that the rules of the grammar are built from �nite sets

of terminal and non-terminal symbols;

◮
We must also
he
k that the set of rules is �nite;

◮
The predi
ate rules_finite_def is used to make sure that these

onditions are satis�ed for every grammar in the formalization, either

user-de�ned or
onstru
ted;

◮
A list of non-terminal symbols (ntl), a list of terminal symbols (tl)

and an upper bound on the length of the right-hand side of the rules

(n) must be supplied.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 71 / 144

Basi
 De�nitions

Example

G = ({S′, A,B, a, b}, {a, b}, {S′ → aS′, S′ → b}, S′) generates the
language a∗b.

Indu
tive nt1: Type:= | S' | A | B.

Indu
tive t1: Type:= | a | b.

Indu
tive rs1: nt1 → list (nt1 + t1) → Prop:=

r1: rs1 S' [inr a; inl S'℄

| r2: rs1 S' [inr b℄.

Definition g1:
fg nt1 t1:= {|

start_symbol:= S';

rules:= rs1;

rules_finite:= rs1_finite |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 72 / 144

Basi
 De�nitions

Derivation

Substitution pro
ess:

s1 derives s2 by appli
ation of zero or more rules: s1 ⇒∗ s2.

Indu
tive derives

(non_terminal terminal : Type)

(g :
fg non_terminal terminal)

: sf → sf → Prop :=

| derives_refl :

∀ s : sf,

derives g s s

| derives_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 73 / 144

Basi
 De�nitions

Derivation

◮
Predi
ate generates: a derivation that begins with the start symbol

of the grammar;

◮
Predi
ate produ
es: a derivation that begins with the start symbol of

the grammar and ends with a senten
e.

S ⇒ α1 ⇒
derives

︷ ︸︸ ︷

α2 ⇒ ...⇒ αn−1
︸ ︷︷ ︸

generates

⇒ αn ⇒ ω

︸ ︷︷ ︸

produ
es

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 74 / 144

Basi
 De�nitions

Example

S ⇒ aS ⇒ aaS ⇒ aab

Lemma produ
es_g1_aab:

produ
es g1 [a; a; b℄.

Proof.

unfold produ
es.

unfold generates.

simpl.

apply derives_step with (s2:=[inr a; inr a℄)(left:=S')(right:=[inr b℄).

apply derives_step with (s2:=[inr a℄)(left:=S')(right:=[inr a;inl S'℄).

apply derives_start with (left:=S')(right:=[inr a;inl S'℄).

apply r11.

apply r11.

apply r12.

Qed.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 75 / 144

Basi
 De�nitions

Grammar Equivalen
e

g1 ≡ g2
if they generate the same language, that is,

∀s, (S1 ⇒∗

g1
s)↔ (S2 ⇒∗

g2
s)

Definition g_equiv

(non_terminal1 non_terminal2 terminal : Type)

(g1:
fg non_terminal1 terminal)

(g2:
fg non_terminal2 terminal): Prop:=

∀ s: senten
e,

produ
es g1 s ↔ produ
es g2 s.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 76 / 144

Basi
 De�nitions

Context-Free Language

◮
A language is a set of strings over a given alphabet;

◮
A
ontext-free language is a language that is generated by some

ontext-free grammar: L(G) = {w |S ⇒∗

g w}.

Definition lang (terminal: Type):= senten
e→ Prop.

Definition lang_of_g (g:
fg): lang :=

fun w: senten
e⇒ produ
es g w.

Definition lang_eq (l k: lang) :=

∀ w, l w ↔ k w.

Definition
fl (terminal: Type) (l: lang terminal): Prop:=

∃ non_terminal: Type,
∃ g:
fg non_terminal terminal,

lang_eq l (lang_of_g g).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 77 / 144

Basi
 De�nitions

Generi
 CFG Library

General purpose lemmas:

◮ ∀g, s1, s2, s3, (s1 ⇒∗

g s2)→ (s2 ⇒∗

g s3)→ (s1 ⇒∗

g s3)

◮ ∀g, s1, s2, s, s′, (s1 ⇒∗

g s2)→ (s · s1 · s′ ⇒∗

g s · s2 · s
′)

◮ ∀g, s1, s2, s3, s4, (s1 ⇒∗

g s2)→ (s3 ⇒∗

g s4)→ (s1 · s3 ⇒∗

g s2 · s4)

◮ ∀g, s1, s2, s3, (s1 · s2 ⇒∗

g s3)→ ∃s
′

1, s
′

2 | (s3 = s′1 · s
′

2) ∧ (s1 ⇒∗

g

s′1) ∧ (s2 ⇒∗

g s
′

2)

◮ ∀g, s1, s2, n, w, (s1 · n · s2 ⇒∗

g w)→ ∃w
′ | (n⇒∗

g w′)

◮ ∀g, n,w, (n⇒∗

g w)→ (n→g w)∨(∃right |n→g right∧right⇒∗

g w)

◮ ∀g1, g2, g3, (g1 ≡ g2) ∧ (g2 ≡ g3)→ (g1 ≡ g3)

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 78 / 144

Basi
 De�nitions

Methodology

For
losure properties, grammar simpli�
ation and Chomsky normal form:

1

Indu
tively de�ne the new non-terminal symbols (if ne
essary);

2

Indu
tively de�ne the rules of the new grammar;

3

De�ne the new grammar;

4

Show that the new grammar has the desired properties;

5

Consolidate the results.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 79 / 144

Closure Properties

Overview

Context-free languages are
losed under union,
on
atenation and

Kleene star.

◮
De�ne union,
on
atenation and Kleene star operations;

◮
Prove that the resulting languages are
ontext-free;

◮
Prove that the resulting languages
ontain exa
tly the expe
ted

strings.

First with grammars, then with languages.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 80 / 144

Closure Properties

Union

De�nitions

Constru
t g3 su
h that L(g3) = L(g1) ∪ L(g2):

Indu
tive g_uni_nt (non_terminal_1 non_terminal_2 : Type): Type:=

| Start_uni

| Transf1_uni_nt: non_terminal_1→ g_uni_nt

| Transf2_uni_nt: non_terminal_2→ g_uni_nt.

Definition g_uni

(non_terminal_1 non_terminal_2 terminal : Type)

(g1:
fg non_terminal_1 terminal)

(g2:
fg non_terminal_2 terminal)

: (
fg g_uni_nt terminal):=

{| start_symbol:= Start_uni;

rules:= g_uni_rules g1 g2;

rules_finite:= g_uni_finite g1 g2 |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 81 / 144

Closure Properties

Union

De�nitions

Indu
tive g_uni_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1:
fg non_terminal_1 terminal)

(g2:
fg non_terminal_2 terminal)

: g_uni_nt→ sfu → Prop :=

| Start1_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf1_uni_nt (start_symbol g1))℄

| Start2_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf2_uni_nt (start_symbol g2))℄

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 82 / 144

Closure Properties

Union

De�nitions

| Lift1_uni:

∀ nt: non_terminal_1,
∀ s: sf1,

rules g1 nt s →
g_uni_rules g1 g2 (Transf1_uni_nt nt) (map g_uni_sf_lift1 s)

| Lift2_uni:

∀ nt: non_terminal_2,
∀ s: sf2,

rules g2 nt s →
g_uni_rules g1 g2 (Transf2_uni_nt nt) (map g_uni_sf_lift2 s).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 83 / 144

Closure Properties

Union

Corre
tness

∀g1, g2, s1, s2, (S1 ⇒∗

g1
s1 → S3 ⇒∗

g3
s1) ∧ (S2 ⇒∗

g2
s2 → S3 ⇒∗

g3
s2)

Theorem g_uni_
orre
t:

∀ g1:
fg non_terminal_1 terminal,

∀ g2:
fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
(generates g1 s1 → generates (g_uni g1 g2) (map g_uni_sf_lift1 s1))

∧
(generates g2 s2 → generates (g_uni g1 g2) (map g_uni_sf_lift2 s2)).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 84 / 144

Closure Properties

Union

Completeness

∀s3, (S3 ⇒∗

g3
s3)→ (S1 ⇒∗

g1
s3) ∨ (S2 ⇒∗

g2
s3)

Theorem g_uni_
orre
t_inv:

∀ g1:
fg non_terminal_1 terminal,

∀ g2:
fg non_terminal_2 terminal,

∀ s: sfu,

generates (g_uni g1 g2) s →
(s=[inl (start_symbol (g_uni g1 g2))℄) ∨
(∃ s1: sf1, (s=(map g_uni_sf_lift1 s1) ∧ generates g1 s1)) ∨
(∃ s2: sf2, (s=(map g_uni_sf_lift2 s2) ∧ generates g2 s2)).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 85 / 144

Closure Properties

Union

Proofs Outline

◮
The
orre
tness proof is straightforward and was obtained dire
tly

from the de�nition of the
orresponding grammars;

◮
The
ompleteness proofs is more
ompli
ated, and was
onstru
ted by

indu
tion on the indu
tive de�nition derives, with extensive
ase

analysis;

◮
Equivalent statements were proved using
ontext-free languages

instead of
ontext-free grammars:

Indu
tive l_uni (l1 l2: lang terminal): lang terminal:=

| l_uni_l1: ∀ s: senten
e, l1 s → l_uni l1 l2 s

| l_uni_l2: ∀ s: senten
e, l2 s → l_uni l1 l2 s.

Theorem l_uni_is_
fl:

∀ l1 l2: lang terminal,
fl l1 →
fl l2 →
fl (l_uni l1 l2).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 86 / 144

Closure Properties

Con
atenation

De�nitions

Constru
t g3 su
h that L(g3) = L(g1) · L(g2):

Indu
tive g_
at_nt (non_terminal_1 non_terminal_2 terminal : Type)

: Type:=

| Start_
at

| Transf1_
at_nt: non_terminal_1→ g_
at_nt

| Transf2_
at_nt: non_terminal_2→ g_
at_nt.

Definition g_
at

(non_terminal_1 non_terminal_2 terminal : Type)

(g1:
fg non_terminal_1 terminal)

(g2:
fg non_terminal_2 terminal)

: (
fg g_
at_nt terminal):=

{| start_symbol:= Start_
at;

rules:= g_
at_rules g1 g2;

rules_finite:= g_
at_finite g1 g2 |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 87 / 144

Closure Properties

Con
atenation

De�nitions

Indu
tive g_
at_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1:
fg non_terminal_1 terminal)

(g2:
fg non_terminal_2 terminal)

: g_
at_nt→ sf
 → Prop :=

| New_
at:

g_
at_rules g1 g2 Start_
at

([inl (Transf1_
at_nt (start_symbol g1))℄++

[inl (Transf2_
at_nt (start_symbol g2))℄)

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 88 / 144

Closure Properties

Con
atenation

De�nitions

| Lift1_
at:

∀ nt s,

rules g1 nt s →
g_
at_rules g1 g2 (Transf1_
at_nt nt) (map g_
at_sf_lift1 s)

| Lift2_
at:

∀ nt s,

rules g2 nt s →
g_
at_rules g1 g2 (Transf2_
at_nt nt) (map g_
at_sf_lift2 s).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 89 / 144

Closure Properties

Con
atenation

Corre
tness

∀g1 g2, s1, s2, (S1 ⇒∗

g1
s1) ∧ (S2 ⇒∗

g2
s2)→ (S3 ⇒∗

g3
s1s2)

Theorem g_
at_
orre
t:

∀ g1:
fg non_terminal_1 terminal,

∀ g2:
fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
generates g1 s1 ∧ generates g2 s2 →
generates (g_
at g1 g2) ((map g_
at_sf_lift1 s1)++

(map g_
at_sf_lift2 s2)).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 90 / 144

Closure Properties

Con
atenation

Completeness

∀s3, (S3 ⇒∗

g3
s3)→ ∃s1, s2 | (s3 = s1 · s2) ∧ (S1 ⇒∗

g1
s1) ∧ (S2 ⇒∗

g2
s2)

Theorem g_
at_
orre
t_inv:

∀ g1:
fg non_terminal_1 terminal,

∀ g2:
fg non_terminal_2 terminal,

∀ s: sf
,

generates (g_
at g1 g2) s →
s = [inl (start_symbol (g_
at g1 g2))℄ ∨
∃ s1: sf1,
∃ s2: sf2,
s =(map g_
at_sf_lift1 s1)++(map g_
at_sf_lift2 s2) ∧
generates g1 s1 ∧ generates g2 s2.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 91 / 144

Closure Properties

Con
atenation

Proofs Outline

◮
Both the
orre
tness and the
ompleteness proofs are
onstru
ted by

indu
tion on the indu
tive de�nition derives, with extensive
ase

analysis.

◮
Equivalent statements were proved using
ontext-free languages

instead of
ontext-free grammars:

Indu
tive l_
at (l1 l2: lang terminal): lang terminal:=

| l_
at_app: ∀ s1 s2: senten
e,

l1 s1 → l2 s2 → l_
at l1 l2 (s1 ++s2).

Theorem l_
at_is_
fl:

∀ l1 l2: lang terminal,

fl l1 →
fl l2 →
fl (l_
at l1 l2).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 92 / 144

Closure Properties

Kleene Star

De�nitions

Constru
t g2 su
h that L(g2) = (L(g1))
∗
:

Indu
tive g_
lo_nt (non_terminal : Type): Type :=

| Start_
lo : g_
lo_nt

| Transf_
lo_nt : non_terminal→ g_
lo_nt.

Definition g_
lo (g:
fg non_terminal terminal):

(non_terminal terminal : Type)

(g:
fg g_
lo_nt terminal):=

{| start_symbol:= Start_
lo;

rules:= g_
lo_rules g;

rules_finite:= g_
lo_finite g |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 93 / 144

Closure Properties

Kleene Star

De�nitions

Indu
tive g_
lo_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: g_
lo_nt→ sf
 → Prop :=

| New1_
lo:

g_
lo_rules g Start_
lo ([inl Start_
lo℄ ++

[inl (Transf_
lo_nt (start_symbol g))℄)

| New2_
lo:

g_
lo_rules g Start_
lo [℄

| Lift_
lo:

∀ nt: non_terminal,
∀ s: sf,

rules g nt s →
g_
lo_rules g (Transf_
lo_nt nt) (map g_
lo_sf_lift s).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 94 / 144

Closure Properties

Kleene Star

Corre
tness

∀g1, s1, s2, (S2 ⇒∗

g2
ǫ) ∧ ((S2 ⇒∗

g2
s2) ∧ (S1 ⇒∗

g1
s1)→ S2 ⇒∗

g2
s2 · s1)

Theorem g_
lo_
orre
t:

∀ g:
fg non_terminal terminal,

∀ s: sf,

∀ s': sf
,

generates (g_
lo g) nil ∧
(generates (g_
lo g) s' ∧ generates g s →
generates (g_
lo g) (s'++ map g_
lo_sf_lift s)).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 95 / 144

Closure Properties

Kleene Star

Completeness

∀s2, (S2 ⇒∗

g2
s2)→ (s2 = ǫ) ∨ (∃s1, s′2 | (s2 = s′2 · s1) ∧ (S2 ⇒∗

g2

s′2) ∧ (S1 ⇒∗

g1
s1))

Theorem g_
lo_
orre
t_inv:

∀ g:
fg non_terminal terminal,

∀ s: sf
,

generates (g_
lo g) s →
(s=[℄) ∨
(s=[inl (start_symbol (g_
lo g))℄) ∨
(∃ s': sf
,

∃ s'': sf,

generates (g_
lo g) s' ∧ generates g s'' ∧ s=s' ++map g_
lo_sf_lift s'').

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 96 / 144

Closure Properties

Kleene Star

Proofs Outline

◮
The
orre
tness proof is straightforward and are obtained dire
tly from

the de�nition of the
orresponding grammars;

◮
The
ompleteness proofs is more
ompli
ated, and are
onstru
ted by

indu
tion on the indu
tive de�nition derives, with extensive
ase

analysis.

◮
Equivalent statements were proved using
ontext-free languages

instead of
ontext-free grammars:

Indu
tive l_
lo (l: lang terminal): lang terminal:=

| l_
lo_nil: l_
lo l [℄

| l_
lo_app: ∀ s1 s2: senten
e,

(l_
lo l) s1 → l s2 → l_
lo l (s1 ++s2).

Theorem l_
lo_is_
fl:

∀ l: lang terminal,
fl l →
fl (l_
lo l).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 97 / 144

Grammar Simpli�
ation

Overview

Grammar simpli�
ation aims at obtaining new and simpler grammars that

are equivalent to the original ones:

◮
Simpler means:

◮
They
ontain only symbols and rules that are e�e
tively used in the

derivation of some senten
e;

◮
They do not
ontain unit rules (e.g. A→ B);

◮
They do not
ontain empty rules (e.g. A→ ǫ), ex
ept for a spe
ial

ase.

◮
Equivalent means that they generate the same language.

Important to redu
e the
omplexity of grammars and thus (i) simplify its

understanding, in
rease the e�
ien
y of parsers obtained from them and

(iii) allow their normalization.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 98 / 144

Grammar Simpli�
ation

Elimination of empty rules

Con
ept

◮
An empty rule r ∈ P is a rule whose right-hand side β is empty (e.g.

X → ǫ);

◮
We formalize that for all G, there exists G′

su
h that L(G) = L(G′)
and G′

has no empty rules, ex
ept for a single rule S → ǫ if ǫ ∈ L(G);
in this
ase, S (the initial symbol of G′

) does not appear on the

right-hand side of any rule in G′
.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 99 / 144

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Definition empty

(g:
fg terminal _) (s: non_terminal + terminal): Prop:=

derives g [s℄ [℄.

Indu
tive non_terminal': Type:=

| Lift_nt: non_terminal→ non_terminal'

| New_ss.

Definition g_emp

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal' terminal :=

{| start_symbol:= New_ss;

rules:= g_emp_rules g;

rules_finite:= g_emp_finite g |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 100 / 144

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Indu
tive g_emp_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' → sf' → Prop :=

| Lift_dire
t :

∀ left: non_terminal,
∀ right: sf,
right 6= [℄ → rules g left right →
g_emp_rules g (Lift_nt left) (map symbol_lift right)

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 101 / 144

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

| Lift_indire
t:

∀ left: non_terminal,
∀ right: sf,
g_emp_rules g (Lift_nt left) (map symbol_lift right)→
∀ s1 s2: sf,

∀ s: non_terminal,

right = s1 ++(inl s) :: s2 →
empty g (inl s) →
s1 ++s2 6= [℄ →
g_emp_rules g (Lift_nt left) (map symbol_lift (s1 ++s2))

| Lift_start_emp:

g_emp_rules g New_ss [inl (Lift_nt (start_symbol g))℄.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 102 / 144

Grammar Simpli�
ation

Elimination of empty rules

Example

Suppose that X,A,B,C are non-terminals, of whi
h A,B and C are

nullable, a, b and c are terminals and X → aAbBcC is a rule of g. Then,

the above de�nitions assert that X → aAbBcC is a rule of g_emp g, and

also:

◮ X → aAbBc;

◮ X → abBcC;

◮ X → aAbcC;

◮ X → aAbc;

◮ X → abBc;

◮ X → abcC;

◮ X → abc.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 103 / 144

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Definition g_emp'

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg (non_terminal' _) terminal :=

{| start_symbol:= New_ss _;

rules:= g_emp'_rules g;

rules_finite:= g_emp'_finite g |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 104 / 144

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Indu
tive g_emp'_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' non_terminal→ sf' → Prop :=

| Lift_all:

∀ left: non_terminal' _,
∀ right: sf',
rules (g_emp g) left right → g_emp'_rules g left right

| Lift_empty:

empty g (inl (start_symbol g)) →
g_emp'_rules g (start_symbol (g_emp g)) [℄.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 105 / 144

Grammar Simpli�
ation

Elimination of empty rules

Corre
tness

Theorem g_emp'_
orre
t:

∀ g:
fg non_terminal terminal,

g_equiv (g_emp' g) g ∧
(generates_empty g → has_one_empty_rule (g_emp' g)) ∧
(∼ generates_empty g → has_no_empty_rules (g_emp' g)) ∧
start_symbol_not_in_rhs (g_emp' g).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 106 / 144

Grammar Simpli�
ation

Elimination of empty rules

Proof Outline

The de�nition of g_equiv, when applied to the previous theorem, yields:

∀ s: senten
e,

produ
es (g_emp' g) s ↔ produ
es g s.

◮
For the → part, the strategy is to prove that for every rule

left→g_emp′ right, either left→g right is a rule of g or

left⇒∗

g right;

◮
For the ← part, the strategy is a more
ompli
ated one, and involves

indu
tion over the number of derivation steps in g.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 107 / 144

Grammar Simpli�
ation

Elimination of unit rules

Con
ept

◮
A unit rule r ∈ P is a rule whose right-hand side β
ontains a single

non-terminal symbol (e.g. X → Y);

◮
We formalize that for all G, there exists G′

su
h that L(G) = L(G′)
and G′

has no unit rules.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 108 / 144

Grammar Simpli�
ation

Elimination of unit rules

De�nitions

Indu
tive unit

(terminal non_terminal : Type)

(g:
fg terminal non_terminal)

(a: non_terminal)

: non_terminal→ Prop:=

| unit_rule:

∀ (b: non_terminal),

rules g a [inl b℄ → unit g a b

| unit_trans:

∀ b
: non_terminal,

unit g a b → unit g b
 → unit g a
.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 109 / 144

Grammar Simpli�
ation

Elimination of unit rules

De�nitions

Definition g_unit

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_unit_rules g;

rules_finite:= g_unit_finite g |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 110 / 144

Grammar Simpli�
ation

Elimination of unit rules

De�nitions

Indu
tive g_unit_rules

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_dire
t' :

∀ left: non_terminal,
∀ right: sf,
(∀ r: non_terminal, right 6= [inl r℄) →
rules g left right →
g_unit_rules g left right

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 111 / 144

Grammar Simpli�
ation

Elimination of unit rules

De�nitions

| Lift_indire
t':

∀ a b: non_terminal,

unit g a b →
∀ right: sf,
rules g b right →
(∀
: non_terminal, right 6= [inl
℄) →
g_unit_rules g a right.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 112 / 144

Grammar Simpli�
ation

Elimination of unit rules

Example

Suppose that N = {S′,X, Y, Z}, Σ = {a, b, c} and
P = {S′ → X,X → aX,X → Y, Y → XbY, Y → Z,Z → c}. The
previous de�nitions assert that P ′

has the following rules:

◮ S′ → aX;

◮ S′ → XbY ;

◮ S′ → c;

◮ X → aX;

◮ X → XbY ;

◮ X → c;

◮ Y → XbY ;

◮ Y → c;

◮ Z → c

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 113 / 144

Grammar Simpli�
ation

Elimination of unit rules

Corre
tness

Theorem g_unit_
orre
t:

∀ g:
fg non_terminal terminal,

g_equiv (g_unit g) g ∧ has_no_unit_rules (g_unit g).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 114 / 144

Grammar Simpli�
ation

Elimination of unit rules

Proof Outline

Consider g_equiv (g_unit g) g of the previous statement:

◮
For the → part, the strategy adopted is to prove that for every rule

left→g_unit right of (g_unit g), either left→g right is a rule of g

or left⇒∗

g right;

◮
For the ← part, the strategy is also a more
ompli
ated one, and

involves indu
tion over a predi
ate that is equivalent to derives

(derives3), but generates the senten
e dire
tly without
onsidering the

appli
ation of a sequen
e of rules, whi
h allows one to abstra
t the

appli
ation of unit rules in g.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 115 / 144

Grammar Simpli�
ation

Elimination of useless symbols

Con
ept

◮
A symbol s ∈ V is useful if it is possible to derive a senten
e from it

using the rules of the grammar. Otherwise, s is
alled an useless

symbol;

◮
A useful symbol s is one su
h that s⇒∗ ω, with ω ∈ Σ∗

;

◮
We formalize that, for all G su
h that L(G) 6= ∅, there exists G′

su
h

that L(G) = L(G′) and G′
has no useless symbols.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 116 / 144

Grammar Simpli�
ation

Elimination of useless symbols

De�nitions

Definition useful

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

mat
h s with

| inr t ⇒ True

| inl n ⇒ ∃ s: senten
e, derives g [inl n℄ (map term_lift s)

end.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 117 / 144

Grammar Simpli�
ation

Elimination of useless symbols

De�nitions

Definition g_use

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal terminal:=

{| start_symbol:= start_symbol g;

rules:= g_use_rules g;

rules_finite:= g_use_finite g |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 118 / 144

Grammar Simpli�
ation

Elimination of useless symbols

De�nitions

Indu
tive g_use_rules

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_use :

∀ left: non_terminal,
∀ right: sf,
rules g left right →
useful g (inl left) →
(∀ s: non_terminal + terminal, In s right → useful g s) →
g_use_rules g left right.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 119 / 144

Grammar Simpli�
ation

Elimination of useless symbols

Corre
tness

Theorem g_use_
orre
t:

∀ g:
fg non_terminal terminal,

non_empty g → g_equiv (g_use g) g ∧ has_no_useless_symbols (g_use g).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 120 / 144

Grammar Simpli�
ation

Elimination of useless symbols

Proof Outline

Consider g_equiv (g_use g) g of the previous statement:

◮
The → part of the g_equiv proof is straightforward, sin
e every rule

of g_use is also a rule of g;

◮
For the
onverse, it is ne
essary to show that every symbol used in a

derivation of g is useful, and thus all the rules used in this derivation

also appear in g_use.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 121 / 144

Grammar Simpli�
ation

Elimination of ina

essible symbols

Con
ept

◮
A symbol s ∈ V is a

essible if it is part of at least one string

generated from the root symbol of the grammar. Otherwise, it is

alled an ina

essible symbol;

◮
An a

essible symbol s is one su
h that S ⇒∗ αsβ, with α, β ∈ V ∗

;

◮
We formalize that for all G, there exists G′

su
h that L(G) = L(G′)
and G′

has no ina

essible symbols.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 122 / 144

Grammar Simpli�
ation

Elimination of ina

essible symbols

De�nitions

Definition a

essible

(terminal non_terminal : Type)

(g :
fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

∃ s1 s2: sf, derives g [inl (start_symbol g)℄ (s1 ++s :: s2).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 123 / 144

Grammar Simpli�
ation

Elimination of ina

essible symbols

De�nitions

Definition g_a

(terminal non_terminal : Type)

(g :
fg non_terminal terminal)

:
fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_a

_rules g;

rules_finite:= g_a

_finite g |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 124 / 144

Grammar Simpli�
ation

Elimination of ina

essible symbols

De�nitions

Indu
tive g_a

_rules

(terminal non_terminal : Type)

(g :
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_a

 : ∀ left: non_terminal,
∀ right: sf,
rules g left right → a

essible g (inl left) →
g_a

_rules g left right.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 125 / 144

Grammar Simpli�
ation

Elimination of ina

essible symbols

Corre
tness

Theorem g_a

_
orre
t:

∀ g:
fg non_terminal terminal,

g_equiv (g_a

 g) g ∧ has_no_ina

essible_symbols (g_a

 g).

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 126 / 144

Grammar Simpli�
ation

Elimination of ina

essible symbols

Proof Outline

Consider g_equiv (g_a

 g) g of the previous statement:

◮
The → part of the g_equiv proof is also straightforward, sin
e every

rule of g_a

 is also a rule of g;

◮
For the
onverse, it is ne
essary to show that every symbol used in the

derivation of g is a

essible, and thus the rules used in this derivation

also appear in g_a

.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 127 / 144

Grammar Simpli�
ation

Uni�
ation

All in the Same Grammar

Theorem g_simpl:

∀ g:
fg non_terminal terminal,

non_empty g →
∃ g':
fg (non_terminal' non_terminal) terminal,

g_equiv g' g ∧
has_no_ina

essible_symbols g' ∧
has_no_useless_symbols g' ∧
(generates_empty g → has_one_empty_rule g') ∧
(∼ generates_empty g → has_no_empty_rules g') ∧
has_no_unit_rules g' ∧
start_symbol_not_in_rhs g'.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 128 / 144

Grammar Simpli�
ation

Uni�
ation

Proof Outline

Requires the proof that
ertain operations preserve some properties of the

original grammar:

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 129 / 144

Chomsky Normal Form

Con
ept

∀G = (V,Σ, P, S),

∃G′ = (V ′,Σ, P ′, S′) |

L(G) = L(G′)∧

∀(α→ β) ∈ P ′, (β ∈ Σ) ∨ (β ∈ N ·N)

Important for:

◮
De
idability of the membership problem ;

◮
Some parsing algorithms (e.g. CYK);

◮
Pumping Lemma.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 130 / 144

Chomsky Normal Form

Example

As an example,
onsider G = ({S′,X, Y, Z, a, b, c}, {a, b, c}, P, S′) with P

equal to:

{S′ → XY Zd,

X → a,

Y → b,

Z → c, }

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 131 / 144

Chomsky Normal Form

Example

The CNF grammar G′
, equivalent to G, would then be the one with the

following set of rules:

{S′ → X[Y Zd],

[Y Zd] → Y [Zd],

[Zd] → Z[d],

[d] → d,

X → a,

Y → b,

Z → c, }

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 132 / 144

Chomsky Normal Form

De�nitions

Indu
tive non_terminal' (non_terminal terminal : Type): Type:=

| Lift_r: sf → non_terminal'.

Definition g_
nf

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal' terminal :=

{| start_symbol:= Lift_r [inl (start_symbol g)℄;

rules:= g_
nf_rules g;

rules_finite:= g_
nf_finite g |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 133 / 144

Chomsky Normal Form

De�nitions

Indu
tive g_
nf_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_
nf_t:

∀ t: terminal,

∀ left: non_terminal,
∀ s1 s2: sf,

rules g left (s1++[inr t℄++s2) →
g_
nf_rules g (Lift_r [inr t℄) [inr t℄

| Lift_
nf_1:

∀ left: non_terminal,
∀ t: terminal,

rules g left [inr t℄ →
g_
nf_rules g (Lift_r [inl left℄) [inr t℄

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 134 / 144

Chomsky Normal Form

De�nitions

| Lift_
nf_2:

∀ left: non_terminal,
∀ s1 s2: symbol,

∀ beta: sf,
rules g left (s1 :: s2 :: beta) →
g_
nf_rules g (Lift_r [inl left℄)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: beta))℄

| Lift_
nf_3:

∀ left: sf,
∀ s1 s2 s3: symbol,

∀ beta: sf,
g_
nf_rules g (Lift_r left)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: s3 :: beta))℄ →
g_
nf_rules g (Lift_r (s2 :: s3 :: beta))

[inl (Lift_r [s2℄); inl (Lift_r (s3 :: beta))℄.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 135 / 144

Chomsky Normal Form

De�nitions

Definition g_
nf'

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal' terminal:=

{| start_symbol:= start_symbol (g_
nf g);

rules:= g_
nf'_rules g;

rules_finite:= g_
nf'_finite g |}.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 136 / 144

Chomsky Normal Form

De�nitions

Indu
tive g_
nf'_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_
nf'_all:

∀ left: non_terminal',
∀ right: sf',
g_
nf_rules g left right →
g_
nf'_rules g left right

| Lift_
nf'_new:

g_
nf'_rules g (start_symbol (g_
nf g)) [℄.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 137 / 144

Chomsky Normal Form

Corre
tness

Theorem g_
nf_final:

∀ g:
fg non_terminal terminal,

(produ
es_empty g ∨ ∼ produ
es_empty g) ∧
(produ
es_non_empty g ∨ ∼ produ
es_non_empty g) →
∃ g':
fg non_terminal' terminal,

g_equiv g' g ∧
(is_
nf g' ∨ is_
nf_with_empty_rule g') ∧
start_symbol_not_in_rhs g'.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 138 / 144

Chomsky Normal Form

Proof Outline

The proof of this theorem requires, among other things, that the original

grammar is �rst simpli�ed a

ording to the results dis
ussed in the previous

se
tion.

◮
For the ← part of g_equiv, the strategy adopted is to prove that for

every rule left→ right of g, either left→ right is a rule of g_
nf

g or left⇒∗ right in g_
nf g;

◮
For the → part, that is, (s1 ⇒∗

g_cnfg s2)→ (s1 ⇒∗

g s2), it is enough

to note that the sentential forms of g are embedded in the sentential

forms of g_
nf g, spe
i�
ally in the arguments of the
onstru
tor

Lift_r of non_terminal'. Thus, a simple extra
tion me
hanism

allows the impli
ation to be proved by indu
tion on the stru
ture of

the sentential form s1.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 139 / 144

Pumping Lemma

Con
ept

∀L,
ontext-free (L)→

∃n | ∀s, (s ∈ L) ∧ (|s| ≥ n)→

(s = uvwxy) ∧ (|vx| > 0) ∧ (|vwx| ≤ n) ∧ (∀i, uviwxiy ∈ L)

◮
A property of all
ontext-free languages;

◮
States that from
ertain strings of the language it is possible to

generate an in�nite number of other strings that also belong to the

language;

◮
Is used to prove that
ertain languages are not
ontext-free;

◮
Explores the �niteness of the number of non-terminals, in parti
ular in

the CNF grammar, and makes extensive use of (binary) trees.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 140 / 144

Con
lusions

Computers and mathemati
s

◮
Pra
titioners base is still small;

◮
Learning
urve grows (very) slowly;

◮
Advantages of formalization are immense;

◮
Important industrial proje
ts;

◮
Important theoreti
al works;

◮
Disadvantages are being gradually eliminated;

◮
The trend is
learly set.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 141 / 144

Con
lusions

This Formalization

◮
Comprehensive set of fundamental results on
ontext-free language

theory;

◮
First formalization in Coq (preliminary work by Filliâtre);

◮
First formalization at all of the Pumping Lemma;

◮
Framework to advan
e with the formalization of CFLs and related

theories.

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 142 / 144

Con
lusions

Plans for the Future

◮
Obtain the degree (deadline Feb/2016);

◮
Promote Coq and mathemati
al formalization through spee
hs,

workshops and other a
ademi
 a
tivities;

◮
Continue the formalization:

◮
SSRre�e
t;

◮
Code extra
tion and
erti�ed algorithms;

◮
Pushdown automata and other results of CFLs.

◮
Keep learning Coq!

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 143 / 144

Con
lusions

Computers and mathemati
s

◮
Not easy, but very rewarding;

◮
Hope you have enjoyed;

◮
Ask me if you want referen
es;

◮
Write me if you have questions or suggestions;

◮
Let me know you if plan to work in this area.

Thank you!

Mar
us Ramos (UFPE) CFL Theory Formalization July 10th, 2015 144 / 144

	Introduction
	Formal Mathematics
	Proof Assistants
	Coq
	Formalization Projects
	Context-Free Language Theory
	General Picture
	Basic Definitions
	Closure Properties
	Grammar Simplification
	Chomsky Normal Form
	Pumping Lemma
	Conclusions

