
13th LSFA

Logi
al and Semanti
 Frameworks,

with Appli
ations

UFC, Fortaleza, CE

Mar
us Ramos Some Appli
ations September 26th, 2018 1 / 29

Some Appli
ations of the Formalization of the Pumping

Lemma for Context-Free Languages

Mar
us Viní
ius Midena Ramos

(UNIVASF, Petrolina, PE)

José Carlos Ba
elar Almeida

(HASLab - INESC TEC, Universidade do Minho, Braga, Portugal)

Nelma Moreira

(Departamento de Ciên
ia de Computadores, Fa
uldade de Ciên
ias, Porto, Portugal)

Ruy J. G. B. de Queiroz

(UFPE, Re
ife, PE)

September 26th, 2018

Mar
us Ramos Some Appli
ations September 26th, 2018 2 / 29

S
ope

Formalize of a substantial part of
ontext-free language theory in the Coq

proof assistant.

◮
Formalization is the pro
ess of writing proofs su
h that they have a

pre
ise meaning over a simple and well-de�ned
al
ulus whose rules

an be automati
ally
he
ked by a ma
hine;

◮
Context-free language theory is fundamental in the representation and

study of arti�
ial languages, spe
ially programming languages, and in

the
onstru
tion of their pro
essors (
ompilers and interpreters);

◮
The formalization of
ontext-free language theory is a key to the

erti�
ation of
ompilers and programs, as well as to the development

of new languages and tools for
erti�ed programming.

Mar
us Ramos Some Appli
ations September 26th, 2018 3 / 29

Context-Free Language Theory

Overview

◮
Part of Formal Language Theory (Chomsky Hierar
hy):

◮
Regular Languages;

◮
Context-Free Languages ;

◮
Context-Sensitive Languages;

◮
Re
ursively Enumerable Languages.

◮
Developed from mid 1950s to late 1970s;

◮
Sin
e then, mostly text proofs and almost no formalization;

◮
Relevant to the representation, study and implementation of arti�
ial

languages;

Mar
us Ramos Some Appli
ations September 26th, 2018 4 / 29

Context-Free Language Theory

Steps

Main results sin
e 2013:

1

Closure properties (9th LSFA 2014):

◮
Union;

◮
Con
atenation;

◮
Kleene star.

2

Grammar simpli�
ation (10th LSFA 2015):

◮
Elimination of empty rules;

◮
Elimination of unit;

◮
Elimination of useless symbols;

◮
Elimination of ina

essible symbols.

3

Chomsky Normal Form;

4

Pumping Lemma (JFR, 2016)

5

Languages that are not
ontext-free (13th LSFA, 2018)

Mar
us Ramos Some Appli
ations September 26th, 2018 5 / 29

Basi
 De�nitions

Context-Free Grammar

G = (V,Σ, P, S), where:

◮ V is the vo
abulary of G;

◮ Σ is the set of terminal symbols;

◮ N = V \ Σ is the set of non-terminal symbols;

◮ P is the set of rules α → β, with α ∈ N and β ∈ V ∗
;

◮ S ∈ N is the start symbol.

Re
ord
fg (non_terminal terminal : Type): Type:= {

start_symbol: non_terminal;

rules: non_terminal → list (non_terminal + terminal) → Prop;

rules_finite:

∃ n: nat,

∃ ntl: nlist,

∃ tl: tlist,

rules_finite_def start_symbol rules n ntl tl }.

Mar
us Ramos Some Appli
ations September 26th, 2018 6 / 29

Basi
 De�nitions

Context-Free Grammar

Making sure that
fg represents a
ontext-free grammar:

◮
General types might have an in�nite number of elements;

◮
We must
he
k that the rules of the grammar are built from �nite sets

of terminal and non-terminal symbols;

◮
We must also
he
k that the set of rules is �nite;

◮
The predi
ate rules_finite_def is used to make sure that these

onditions are satis�ed for every grammar in the formalization, either

user-de�ned or
onstru
ted;

◮
A list of non-terminal symbols (ntl), a list of terminal symbols (tl)

and an upper bound on the length of the right-hand side of the rules

(n) must be supplied.

Mar
us Ramos Some Appli
ations September 26th, 2018 7 / 29

Basi
 De�nitions

Example

G = ({S′, A,B, a, b}, {a, b}, {S′ → aS′, S′ → b}, S′) generates the
language a∗b.

Indu
tive nt1: Type:= | S' | A | B.

Indu
tive t1: Type:= | a | b.

Indu
tive rs1: nt1 → list (nt1 + t1) → Prop:=

r1: rs1 S' [inr a; inl S'℄

| r2: rs1 S' [inr b℄.

Definition g1:
fg nt1 t1:= {|

start_symbol:= S';

rules:= rs1;

rules_finite:= rs1_finite |}.

Mar
us Ramos Some Appli
ations September 26th, 2018 8 / 29

Basi
 De�nitions

Derivation

Substitution pro
ess:

s1 derives s2 by appli
ation of zero or more rules: s1 ⇒
∗ s2.

Indu
tive derives

(non_terminal terminal : Type)

(g :
fg non_terminal terminal)

: sf → sf → Prop :=

| derives_refl :

∀ s : sf,

derives g s s

| derives_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)

Mar
us Ramos Some Appli
ations September 26th, 2018 9 / 29

Basi
 De�nitions

Derivation

◮
Predi
ate generates: a derivation that begins with the start symbol

of the grammar;

◮
Predi
ate produ
es: a derivation that begins with the start symbol of

the grammar and ends with a senten
e.

S ⇒ α1 ⇒

derives

︷ ︸︸ ︷

α2 ⇒ ... ⇒ αn−1
︸ ︷︷ ︸

generates

⇒ αn ⇒ ω

︸ ︷︷ ︸

produ
es

Mar
us Ramos Some Appli
ations September 26th, 2018 10 / 29

Basi
 De�nitions

Example

S ⇒ aS ⇒ aaS ⇒ aab

Lemma produ
es_g1_aab:

produ
es g1 [a; a; b℄.

Proof.

unfold produ
es.

unfold generates.

simpl.

apply derives_step with (s2:=[inr a; inr a℄)(left:=S')(right:=[inr b℄).

apply derives_step with (s2:=[inr a℄)(left:=S')(right:=[inr a;inl S'℄).

apply derives_start with (left:=S')(right:=[inr a;inl S'℄).

apply r11.

apply r11.

apply r12.

Qed.

Mar
us Ramos Some Appli
ations September 26th, 2018 11 / 29

Basi
 De�nitions

Grammar Equivalen
e

g1 ≡ g2
if they generate the same language, that is,

∀s, (S1 ⇒
∗

g1
s) ↔ (S2 ⇒

∗

g2
s)

Definition g_equiv

(non_terminal1 non_terminal2 terminal : Type)

(g1:
fg non_terminal1 terminal)

(g2:
fg non_terminal2 terminal): Prop:=

∀ s: list terminal,

produ
es g1 s ↔ produ
es g2 s.

Mar
us Ramos Some Appli
ations September 26th, 2018 12 / 29

Basi
 De�nitions

Context-Free Language

◮
A language is a set of strings over a given alphabet;

◮
A
ontext-free language is a language that is generated by some

ontext-free grammar: L(G) = {w |S ⇒∗

g w}.

Definition lang (terminal: Type):= list terminal → Prop.

Definition lang_of_g (g:
fg): lang :=

fun w: list terminal ⇒ produ
es g w.

Definition lang_eq (l k: lang) :=

∀ w, l w ↔ k w.

Definition
fl (terminal: Type) (l: lang terminal): Prop:=

∃ non_terminal: Type,

∃ g:
fg non_terminal terminal,

lang_eq l (lang_of_g g).

Mar
us Ramos Some Appli
ations September 26th, 2018 13 / 29

Appli
ations

Obje
tives

◮
Derive formal proofs that some well-known,
lassi
 languages, are not

ontext-free. For this, we use the formalization of the Pumping

Lemma previously obtained by the authors in the Coq proof assistant.

For ea
h of these languages, we dis
uss the formalization of their non

ontext-freeness and make hopefully useful
onsiderations about the

proof
onstru
tion pro
ess and the
omplexity of the
orresponding

formal and text proofs;

◮
Develop a formal proof of the fa
t that the
lass of the
ontext-free

languages is not
losed under the interse
tion operation. For that, we

follow the
lassi
al proof that uses a
ounter-example, whi
h in our

ase is one of the languages proved not to be
ontext-free in the

previous obje
tive.

Mar
us Ramos Some Appli
ations September 26th, 2018 14 / 29

Appli
ations

Pumping Lemma

Let L be a
ontext-free language de�ned over alphabet Σ. Then there is a

number n, depending only on L, su
h that for every senten
e α ∈ L, if
|α| ≥ n, then all of the following are true (|w| denotes the length of the

word w):

◮ ∃u, v, w, x, y.(α = uvwxy);

◮ |vx| ≥ 1;

◮ |vwx| ≤ n;

◮ ∀i.(uviwxiy ∈ L)

A typi
al use of the Pumping Lemma is to show that a given language is

not
ontext-free by using the
ontrapositive of the statement of the lemma.

The informal proof pro
eeds by
ontraposition: the language is assumed to

be
ontext-free, and this leads to a
ontradi
tion from whi
h one
on
ludes

that the language in question
an not be
ontext-free.

Mar
us Ramos Some Appli
ations September 26th, 2018 15 / 29

Appli
ations

Languages

Classi
al languages
onsidered:

1

square: {w ∈ {a}∗ | ∃ i, |w| = i2, i ≥ 0},

2

prime: {w ∈ {a}∗ | |w| is a prime number},

3

anbn
n: {aibici | i ≥ 0}.

For ea
h:

◮
Text proof;

◮
Formal proof;

◮
Comparison.

Besides these languages, we also dis
uss:

4

anbnanbn: {anbnanbn |n ≥ 0}

5

ww: {ww |w ∈ {a, b}∗}

Mar
us Ramos Some Appli
ations September 26th, 2018 16 / 29

Appli
ations

Languages

Results:

1

square: straightforward;

(

∼
20x expansion fa
tor)

2

prime: straightforward;

(

∼
20x expansion fa
tor)

3

anbn
n: mu
h harder (why?);

(

∼
100x expansion fa
tor)

4

anbnanbn: mu
h mu
h harder (in
omplete);

(

∼
200x expansion fa
tor)

5

ww: also in
omplete.

Let's take a look at anbn
n.

Mar
us Ramos Some Appli
ations September 26th, 2018 17 / 29

Appli
ations

Language anbn
n

Text proof

◮
Suppose that it is
ontext-free and
onsider the word anbncn, where n

is the
onstant of the Pumping Lemma;

◮ anbncn ∈ anbn
n and |anbncn| ≥ n. Thus, the Pumping Lemma
an

be applied;

◮ anbncn = uvwxy for some u, v, w, x and y, with |uvwxy| = 3n,
1 ≤ |vwx| ≤ n and uviwxiy ∈ anbn
n,∀i ≥ 0;

◮ vwx, due to its length limitation,
ontains only one or two di�erent

kind of symbols;

◮
If it
ontains only one kind of symbol, then v and x are also built out

of a single symbol and the pumping of v and x will
hange the

number of a single symbol, while the number of the other two remain

un
hanged. Thus, the new word
an not belong to anbn
n;

Mar
us Ramos Some Appli
ations September 26th, 2018 18 / 29

Appli
ations

Language anbn
n

Text proof

◮
If it
ontains two di�erent kinds of symbols, then v and x might

ontain one or two di�erent kinds of symbols ea
h. If both
ontain

only one kind of symbol, pumping will
hange the number of at most

two symbols, while the third will remain un
hanged. If v or x
ontain

two di�erent kinds of symbols, pumping will lead to a word where the

order is not respe
ted (�rst as, then bs then cs). In all
ases, the new

word does not belong to anbn
n;

◮
Hypothesis is false and anbn
n is not
ontext-free.

Mar
us Ramos Some Appli
ations September 26th, 2018 19 / 29

Appli
ations

Language anbn
n

Formalization

Indu
tive terminal: Type:=

| a

| b

|
.

Definition anbn
n: lang terminal:=

fun (s: list terminal) ⇒
∃ x y z: list terminal,

∃ i: nat,

s = x ++y ++z ∧
length x = i ∧ na x = i ∧ length y = i ∧
nb y = i ∧ length z = i ∧ n
 z = i.

Mar
us Ramos Some Appli
ations September 26th, 2018 20 / 29

Appli
ations

Language anbn
n

Formal proof

Steps:

◮
We have to reason about vwx (either vwx ∈ a∗b∗ or vwx ∈ b∗c∗);

◮ v and x might be empty (but not both);

◮
We
on
lude about |v|a, |v|b, |v|c, |x|a, |x|b and |x|c (whether ea
h is

= 0 or 6= 0);

◮
24
ases must be
onsidered;

◮
2 are dis
arded;

◮
22
ases must be used to show that uv2wx2y
an not belong to

anbn
n;

◮
The formalization is long and tedious;

◮
Some simpli�
ation
an be pursued.

Mar
us Ramos Some Appli
ations September 26th, 2018 21 / 29

Appli
ations

Language anbn
n

Formal proof

Mar
us Ramos Some Appli
ations September 26th, 2018 22 / 29

Appli
ations

Interse
tion

Context-free languages are not
losed under interse
tion:

1

Formalize L1 = {anbncm |n ≥ 0 ∧m ≥ 0};

2

Prove L1 is
ontext-free;

3

Formalize L2 = {ambncn |n ≥ 0 ∧m ≥ 0};

4

Prove L2 is
ontext-free;

5

Formalize language interse
tion;

6

Prove L1 ∩ L2 = anbncn;

7

Re
all anbncn is previously proved not to be
ontext-free;

Mar
us Ramos Some Appli
ations September 26th, 2018 23 / 29

Con
lusions

Results

Languages:

◮
square: straightforward to build and easy to read;

◮
prime: straightforward to build and easy to read;

◮
anbn
n: long and
omplex with extensive
ase analysis;

◮
anbnanbn: longer and more
omplex;

Take anbnanbn, guess about v and x and pump them;

◮
ww: similar to anbnanbn;

Take anbnanbn, guess about v and x and pump them.

Why?

Interse
tion:

◮
straightforward to build and easy to read.

Mar
us Ramos Some Appli
ations September 26th, 2018 24 / 29

Con
lusions

Results

◮
Size and
omplexity in proofs with
ase analysis only;

◮
That is, only with languages anbn
n, anbnanbn and ww;

◮
Does not o

ur with languages square and prime and interse
tion;

◮
Possible reasons:

◮
(*) Proof writing style (one ta
ti
 per line; no proof sear
hing ta
ti
);

◮
(*) Parametrization
an redu
e the number of fun
tions and lemmas;

◮
(**) Extensive
ase analysis with no native support;

◮
(**) Text proofs hide many details that have to be expli
itly stated.

Mar
us Ramos Some Appli
ations September 26th, 2018 25 / 29

Con
lusions

Case analysis

Case analysis with lists (examples from anbn
n and anbnanbn):

◮
Any string that is a substring of a∗b∗ belongs to a∗b∗;

◮
Any string with maximum length n that is a substring of anbncn

belongs to a∗b∗ | b∗c∗;

◮
Any string with maximum length n that is a substring of anbnanbn

belongs to a∗b∗ | b∗a∗.

Mar
us Ramos Some Appli
ations September 26th, 2018 26 / 29

Con
lusions

Text proofs

Text proofs hide details (examples from anbn
n):

◮
�due to its length limitation,
ontains only one or two di�erent kind of

symbols�;

◮
�if it
ontains only one kind of symbol, then ... are also built out of a

single symbol and the pumping of ... will
hange the number of a

single symbol, while the number of the other two remain un
hanged�;

◮
�if it
ontains two di�erent kinds of symbols, then ...might
ontain one

or two di�erent kinds of symbols ea
h�;

◮
�if both
ontain only one kind of symbol, pumping will
hange the

number of at most two symbols, while the third will remain

un
hanged�;

◮
�if ...
ontain two di�erent kinds of symbols, pumping will lead to a

word where the order is not respe
ted�.

Mar
us Ramos Some Appli
ations September 26th, 2018 27 / 29

Con
lusions

Con
lusions

Possible
onsequen
es:

◮
Future support (new libraries) for
ombinatori
s of strings (lists of

symbols) in Coq might help and simplify the formalization;

◮
More detailed (and thus self-explanatory) text proofs must be

onsidered.

To be used in undergraduate
lasses as
ase study.

Mar
us Ramos Some Appli
ations September 26th, 2018 28 / 29

Con
lusions

Final remarks

◮
All s
ripts are publi
ly available and
an be exe
uted in Coq 8.8.1

(July 2018);

◮
Appli
ation of a previously formalized lemma, fundamental to the

language
lass;

◮
First known formal proofs that some
lassi
al languages are not

ontext-free;

◮
Insights involving text and formal proofs;

◮
Helpful in tea
hing formal languages in a formal framework;

◮
Adds a new
losure result to previous results
on
erning the
lass of

the
ontext-free languages.

Mar
us Ramos Some Appli
ations September 26th, 2018 29 / 29

	Context-Free Language Theory
	Basic Definitions
	Applications
	Conclusions

