13th LSFA

Logical and Semantic Frameworks,
with Applications

UFC, Fortaleza, CE

September 26th, 2018

Some Applications of the Formalization of the Pumping
Lemma for Context-Free Languages

Marcus Vinicius Midena Ramos
(UNIVASF, Petrolina, PE)
José Carlos Bacelar Almeida
(HASLab - INESC TEC, Universidade do Minho, Braga, Portugal)
Nelma Moreira
(Departamento de Ciéncia de Computadores, Faculdade de Ciéncias, Porto, Portugal)
Ruy J. G. B. de Queiroz

(UFPE, Recife, PE)

September 26th, 2018

Marcus Ramos Some Applications September 26th, 2018 2/29

Scope

Formalize of a substantial part of context-free language theory in the Coq
proof assistant.

» Formalization is the process of writing proofs such that they have a
precise meaning over a simple and well-defined calculus whose rules
can be automatically checked by a machine;

» Context-free language theory is fundamental in the representation and
study of artificial languages, specially programming languages, and in
the construction of their processors (compilers and interpreters);

» The formalization of context-free language theory is a key to the
certification of compilers and programs, as well as to the development
of new languages and tools for certified programming.

Marcus Ramos Some Applications September 26th, 2018 3/29

Context-Free Language Theory

Overview

v

Part of Formal Language Theory (Chomsky Hierarchy):

» Regular Languages;

Context-Free Languages ;
Context-Sensitive Languages;
Recursively Enumerable Languages.

Developed from mid 1950s to late 1970s;

Since then, mostly text proofs and almost no formalization;

v
vV vy

v

v

Relevant to the representation, study and implementation of artificial
languages;

Marcus Ramos Some Applications September 26th, 2018 4 /29

Context-Free Language Theory

Main results since 2013:
© Closure properties (9th LSFA 2014):
» Union;
» Concatenation;
» Kleene star.

@ Grammar simplification (10th LSFA 2015):

Elimination of empty rules;

» Elimination of unit;

» Elimination of useless symbols;

» Elimination of inaccessible symbols.

© Chomsky Normal Form;
© Pumping Lemma (JFR, 2016)

© Languages that are not context-free (13th LSFA, 2018)

v

Marcus Ramos Some Applications September 26th, 2018 5 /29

Basic Definitions

Context-Free Grammar

G = (V,%,P,S), where:
» V is the vocabulary of G;

v

3 is the set of terminal symbols;

v

N =V \ X is the set of non-terminal symbols;
P is the set of rules o — B, with o« € N and 8 € V*;
» S € N is the start symbol.

v

Record cfg (non_terminal terminal : Type): Type:= {
start_symbol: non_terminal,
rules: non_terminal — list (non_terminal + terminal) — Prop;
rules_finite:

d n: nat,

3 ntl: nlist,

3 tl: tlist,

rules_finite_def start_symbol rules n ntl tl }.

Marcus Ramos Some Applications September 26th, 2018 6 /29

Basic Definitions

Context-Free Grammar

Making sure that cfg represents a context-free grammar:

>

>

General types might have an infinite number of elements;

We must check that the rules of the grammar are built from finite sets
of terminal and non-terminal symbols;

We must also check that the set of rules is finite;

The predicate rules_finite_def is used to make sure that these
conditions are satisfied for every grammar in the formalization, either
user-defined or constructed;

A list of non-terminal symbols (nt1), a list of terminal symbols (t1)
and an upper bound on the length of the right-hand side of the rules
(n) must be supplied.

Marcus Ramos Some Applications September 26th, 2018 7/29

Basic Definitions

Example

G=({5,A, B, a,b},{a,b},{S — aS", 5" — b},S’) generates the
language a*b.

Inductive ntl: Type:=|S | A| B.

Inductive t1: Type:= | a | b.

Inductive rsl: ntl — list (ntl + tl) — Prop:=
rl: rs1 S’ [inr a; inl S']

| r2: rs1S' [inr b].

Definition gl: cfgntl t1:= {]
start_symbol:= S’;

rules:= rsli;

rules_finite:= rsi_finite |}.

Marcus Ramos Some Applications September 26th, 2018 8 /29

Basic Definitions

Derivation

Substitution process:
s1 derives so by application of zero or more rules: s; =* so.

Inductive derives

(non_terminal terminal : Type)

(g : cfgnon_terminal terminal)
sf — sf — Prop =

| derives_refl:
Vs : sf,
derives g s s

| derives_step:
V (sl s2s3: sf)
vV (left : non_terminal)
V (right : sf),
derives g s1 (s2 ++inl left :: s3) —
rules g left right — derives g s1 (s2 ++right ++s3)

Marcus Ramos Some Applications September 26th, 2018 9/29

Basic Definitions

Derivation

» Predicate generates: a derivation that begins with the start symbol
of the grammar;

» Predicate produces: a derivation that begins with the start symbol of
the grammar and ends with a sentence.

derives
7\

S=2a=>wm=>.. o 1=>0, >w

generates

~
produces

Marcus Ramos Some Applications September 26th, 2018 10 / 29

Basic Definitions

Example

S = aS = aaS = aab

Lemma produces_gl_aab:

produces gl [a; a; b].

Proof.

unfold produces.

unfold generates.

simpl.

apply derives_step with (s2:=[inr a; inr a])(left:=S')(right:=[inr b]).
apply derives_step with (s2:=[inr a])(left:=S’)(right:=[inr a;inl S']).
apply derives_start with (left:=S')(right:=[inr a;inl S']).

apply ril.

apply ril.

apply ri2.

Qed.

Marcus Ramos Some Applications September 26th, 2018 11 / 29

Basic Definitions

Grammar Equivalence

g1 =92
if they generate the same language, that is,
Vs, (S1 =0 s) <> (S =0 s)

Definition g_equiv

(non_terminall non_terminal2 terminal : Type)
(gl: cfg non_terminall terminal)

(g2: cfg non_terminal2 terminal): Prop:=

V s: list terminal,

produces gl s <+ produces g2 s.

Marcus Ramos Some Applications September 26th, 2018 12 / 29

Basic Definitions

Context-Free Language

» A language is a set of strings over a given alphabet;

» A context-free language is a language that is generated by some
context-free grammar: L(G) = {w|S =5 w}.
Definition lang (terminal: Type):= list terminal — Prop.

Definition lang_of_g (g: cfg): lang :=
fun w: list terminal = produces g w.

Definition lang_eq (1 k: lang) :=
Vw lw+kw

Definition cfl (terminal: Type) (1: lang terminal): Prop:=
J non_terminal: Type,

J g cfgnon_terminal terminal,

lang_eql (lang_of_g g).

Marcus Ramos Some Applications September 26th, 2018 13 / 29

Applications

Objectives

» Derive formal proofs that some well-known, classic languages, are not
context-free. For this, we use the formalization of the Pumping
Lemma previously obtained by the authors in the Coq proof assistant.
For each of these languages, we discuss the formalization of their non
context-freeness and make hopefully useful considerations about the
proof construction process and the complexity of the corresponding
formal and text proofs;

» Develop a formal proof of the fact that the class of the context-free
languages is not closed under the intersection operation. For that, we
follow the classical proof that uses a counter-example, which in our
case is one of the languages proved not to be context-free in the
previous objective.

Marcus Ramos Some Applications September 26th, 2018 14 / 29

Applications

Pumping Lemma

Let £ be a context-free language defined over alphabet .. Then there is a
number n, depending only on L, such that for every sentence o € L, if
|a| > n, then all of the following are true (|w| denotes the length of the
word w):

» Ju,v,w,z,y.(a = wowzy);
lvx| > 1;

lvwz| < n;

v

v

> Vi.(uwviwz'y € L)
A typical use of the Pumping Lemma is to show that a given language is
not context-free by using the contrapositive of the statement of the lemma.
The informal proof proceeds by contraposition: the language is assumed to
be context-free, and this leads to a contradiction from which one concludes
that the language in question can not be context-free.

Marcus Ramos Some Applications September 26th, 2018 15 / 29

Applications

Languages

Classical languages considered:
Q square: {w € {a}*|3i, |w| =i2,i > 0},
@ prime: {w € {a}*||w] is a prime number},
© anbncn: {a'b'c'|i > 0},
For each:
» Text proof;
» Formal proof;
» Comparison.
Besides these languages, we also discuss:
Q anbnanbn: {a"b"a™b" |n > 0}
Q ww: {ww|w € {a,b}*}

Marcus Ramos Some Applications September 26th, 2018 16 / 29

Applications

Languages

Results:

O square: straightforward;
(~20x expansion factor)

© prime: straightforward;
(~20x expansion factor)

© anbncn: much harder (why?);
(~100x expansion factor)

© anbnanbn: much much harder (incomplete);
(~200x expansion factor)

© ww: also incomplete.

Let's take a look at anbncn.

Marcus Ramos Some Applications September 26th, 2018 17 / 29

Applications

Language anbncn
Text proof

» Suppose that it is context-free and consider the word a"b"c", where n
is the constant of the Pumping Lemma;

» a"b"c"™ € anbncn and |a™b"c"| > n. Thus, the Pumping Lemma can
be applied;

> a"b"c" = uvwzy for some u, v, w, x and y, with [vvwzy| = 3n,
1 < Jvwz| < n and w'wz'y € anbnen, Vi > 0;

» vwx, due to its length limitation, contains only one or two different
kind of symbols;

» If it contains only one kind of symbol, then v and z are also built out
of a single symbol and the pumping of v and x will change the
number of a single symbol, while the number of the other two remain
unchanged. Thus, the new word can not belong to anbncn;

Marcus Ramos Some Applications September 26th, 2018 18 / 29

Applications

Language anbncn
Text proof

» If it contains two different kinds of symbols, then v and = might
contain one or two different kinds of symbols each. If both contain
only one kind of symbol, pumping will change the number of at most
two symbols, while the third will remain unchanged. If v or z contain
two different kinds of symbols, pumping will lead to a word where the
order is not respected (first as, then bs then cs). In all cases, the new
word does not belong to anbncn;

» Hypothesis is false and anbncn is not context-free.

Marcus Ramos Some Applications September 26th, 2018 19 / 29

Applications

Language anbncn

Formalization

Inductive terminal: Type:=

Definition anbncn: lang terminal:=

fun (s: list terminal) =

Jdx y z: list terminal,

3 i: nat,

s = X ++y ++z A
lengthx =i Anax=1Alengthy=1A
nby =1iAlengthz=1Ancz=1i.

Marcus Ramos Some Applications September 26th, 2018 20 / 29

Applications

Language anbncn

Formal proof

Steps:

>

>

>

We have to reason about vwx (either vwz € a*b* or vwx € b*c*);
v and = might be empty (but not both);

We conclude about |v|g, |[V]p, [V]c, |Z|as |Z]p and |z|. (whether each is
=0or #0);

24 cases must be considered,;

2 are discarded;

22 cases must be used to show that uv?wz?y can not belong to
anbncn;

The formalization is long and tedious;

Some simplification can be pursued.

Marcus Ramos Some Applications September 26th, 2018 21 /29

Language anbncn

Formal proof

Marcus Ramos

vwr £ a”b”

Applications

|tla 0 A fols=0A o
[vla =0 A |oje #£0 A [vle=0 A |xfa

[tfa £0 A [els £0 A [l =0 A |z

DA s

€)

|ola =0A [elp =0 A ol =0 A [zia

(v=e)A{z#£e)C [tla=0A Jojs=0A |tle=0A |ga

|tla =0 A [us =0 A Jule=D A |zla
{u) Az =€) § can not oocur, sinee |oz] > 1 (7)
vl #0 A fely 0 A Jeia

|tla =0 A [els A0 A [l =D A |z
[ola 20 A fols =0 A el =D A |oia
|ola £0A o
[vla #0 A Jole #0 A fule =0 A |zjq

:
|
{
:
[

OAfol=0A |z

(o) Ale=e)
[rla=0A ol #A0A 140 A |

[tla=0A |ulp=0A [ele=0A |zl

(=) Afrfe)
DAJufb=0A [ple=0A jzf

(v —e)Alr—¢) since or] > 1 (18)

la=0A vy =0A Jtle #0 A |zia
tla=0A vl DA [tle=0 A |zl
[Hla=0A vl #DA [v]e=0A |zl

(vAe)Alzfe)

[l =0 A fuls #OA Jv]e £ QA fria =

0 A frla =
[ola=0A fufs=0A [tfe £0 A Jrla =

[tle =0 A Julp=0A jele =0 A fzfa -

DA el £OA [tle=0A el =

OA [da=0A |le=0(1)
DA e =0 A |1]e

OA fddo =0 A Jzfe

ADA |rfe =0 A |z
O A Jxis £0 A Jzle
ADA sy £0 A |2)e

£0A |y
OA fzls 20 A Jxle =0 (8)
O A fzi #0 A |rfe =0 (10)
AO0A |ofs £0 A Jrl. =0 (11)
0A s £0 A el =0 (12)

OA |zl =0 A |xe =10 (13)

0 A Jzle =0 (8)

OA |rle=0A |zfe=0 (14)
0A Jelh =0 A |zfe=0 (15)
OA fzis #£ 0 A e =0 (16)
0N fols =0 A | #
OA Jris £ O A |zl £ 0 (18)

OA Jels £0 A Jxfe— 0 (20)
OA Jriy =0 A Jxjc £0 (21)
OA feis =0 A |zl £0 (22)
£0(23)

0A fzls £0 A
0 [zl

22 / 29

Applications

Intersection

Context-free languages are not closed under intersection:

000000

Formalize L1 = {a"b"c™ |n > 0 A m > 0};
Prove L is context-free;

Formalize Ly = {a™b"c" |n > 0 Am > 0};
Prove Lo is context-free;

Formalize language intersection;

Prove L1 N Ly = anbncen;

Recall anbnen is previously proved not to be context-free;

Marcus Ramos Some Applications September 26th, 2018 23 /29

Conclusions

Results

Languages:
» square: straightforward to build and easy to read;
» prime: straightforward to build and easy to read;
» anbncn: long and complex with extensive case analysis;
» anbnanbn: longer and more complex;
Take a™b"a™b", guess about v and = and pump them;
» ww: similar to anbnanbn;
Take a™b"a™b", guess about v and = and pump them.
Why?

Intersection:

>

straightforward to build and easy to read.

Marcus Ramos Some Applications September 26th, 2018 24 / 29

Conclusions

Results

>

Size and complexity in proofs with case analysis only;

v

That is, only with languages anbncn, anbnanbn and ww;

v

Does not occur with languages square and prime and intersection;
Possible reasons:

v

> (*) Proof writing style (one tactic per line; no proof searching tactic);
> (*) Parametrization can reduce the number of functions and lemmas;
» (**) Extensive case analysis with no native support;

» (**) Text proofs hide many details that have to be explicitly stated.

Marcus Ramos Some Applications September 26th, 2018 25 / 29

Conclusions

Case analysis

Case analysis with lists (examples from anbncn and anbnanbn):
» Any string that is a substring of a*b* belongs to a*b*;
» Any string with maximum length n that is a substring of a"b"c"
belongs to a*b* | b*c*;

» Any string with maximum length n that is a substring of a"b"a"b"
belongs to a*b* | b*a*.

Marcus Ramos Some Applications September 26th, 2018 26 / 29

Conclusions

Text proofs

Text proofs hide details (examples from anbncn):

» “due to its length limitation, contains only one or two different kind of
symbols”;

» “if it contains only one kind of symbol, then ... are also built out of a
single symbol and the pumping of ... will change the number of a
single symbol, while the number of the other two remain unchanged”;

» “if it contains two different kinds of symbols, then ...might contain one
or two different kinds of symbols each”;

» “if both contain only one kind of symbol, pumping will change the
number of at most two symbols, while the third will remain
unchanged”;

» “if ... contain two different kinds of symbols, pumping will lead to a
word where the order is not respected”.

Marcus Ramos Some Applications September 26th, 2018 27 / 29

Conclusions

Conclusions

Possible consequences:
» Future support (new libraries) for combinatorics of strings (lists of
symbols) in Coq might help and simplify the formalization;
» More detailed (and thus self-explanatory) text proofs must be
considered.
To be used in undergraduate classes as case study.

Marcus Ramos Some Applications September 26th, 2018 28 / 29

Conclusions

Final remarks

» All scripts are publicly available and can be executed in Coq 8.8.1
(July 2018);

» Application of a previously formalized lemma, fundamental to the
language class;

» First known formal proofs that some classical languages are not
context-free;

» Insights involving text and formal proofs;
» Helpful in teaching formal languages in a formal framework;

» Adds a new closure result to previous results concerning the class of
the context-free languages.

Marcus Ramos Some Applications September 26th, 2018 29 / 29

	Context-Free Language Theory
	Basic Definitions
	Applications
	Conclusions

