
13th LSFA

Logial and Semanti Frameworks,

with Appliations

UFC, Fortaleza, CE

Marus Ramos Some Appliations September 26th, 2018 1 / 29

Some Appliations of the Formalization of the Pumping

Lemma for Context-Free Languages

Marus Viníius Midena Ramos

(UNIVASF, Petrolina, PE)

José Carlos Baelar Almeida

(HASLab - INESC TEC, Universidade do Minho, Braga, Portugal)

Nelma Moreira

(Departamento de Ciênia de Computadores, Fauldade de Ciênias, Porto, Portugal)

Ruy J. G. B. de Queiroz

(UFPE, Reife, PE)

September 26th, 2018

Marus Ramos Some Appliations September 26th, 2018 2 / 29

Sope

Formalize of a substantial part of ontext-free language theory in the Coq

proof assistant.

◮
Formalization is the proess of writing proofs suh that they have a

preise meaning over a simple and well-de�ned alulus whose rules

an be automatially heked by a mahine;

◮
Context-free language theory is fundamental in the representation and

study of arti�ial languages, speially programming languages, and in

the onstrution of their proessors (ompilers and interpreters);

◮
The formalization of ontext-free language theory is a key to the

erti�ation of ompilers and programs, as well as to the development

of new languages and tools for erti�ed programming.

Marus Ramos Some Appliations September 26th, 2018 3 / 29

Context-Free Language Theory

Overview

◮
Part of Formal Language Theory (Chomsky Hierarhy):

◮
Regular Languages;

◮
Context-Free Languages ;

◮
Context-Sensitive Languages;

◮
Reursively Enumerable Languages.

◮
Developed from mid 1950s to late 1970s;

◮
Sine then, mostly text proofs and almost no formalization;

◮
Relevant to the representation, study and implementation of arti�ial

languages;

Marus Ramos Some Appliations September 26th, 2018 4 / 29

Context-Free Language Theory

Steps

Main results sine 2013:

1

Closure properties (9th LSFA 2014):

◮
Union;

◮
Conatenation;

◮
Kleene star.

2

Grammar simpli�ation (10th LSFA 2015):

◮
Elimination of empty rules;

◮
Elimination of unit;

◮
Elimination of useless symbols;

◮
Elimination of inaessible symbols.

3

Chomsky Normal Form;

4

Pumping Lemma (JFR, 2016)

5

Languages that are not ontext-free (13th LSFA, 2018)

Marus Ramos Some Appliations September 26th, 2018 5 / 29

Basi De�nitions

Context-Free Grammar

G = (V,Σ, P, S), where:

◮ V is the voabulary of G;

◮ Σ is the set of terminal symbols;

◮ N = V \ Σ is the set of non-terminal symbols;

◮ P is the set of rules α → β, with α ∈ N and β ∈ V ∗
;

◮ S ∈ N is the start symbol.

Reord fg (non_terminal terminal : Type): Type:= {

start_symbol: non_terminal;

rules: non_terminal → list (non_terminal + terminal) → Prop;

rules_finite:

∃ n: nat,

∃ ntl: nlist,

∃ tl: tlist,

rules_finite_def start_symbol rules n ntl tl }.

Marus Ramos Some Appliations September 26th, 2018 6 / 29

Basi De�nitions

Context-Free Grammar

Making sure that fg represents a ontext-free grammar:

◮
General types might have an in�nite number of elements;

◮
We must hek that the rules of the grammar are built from �nite sets

of terminal and non-terminal symbols;

◮
We must also hek that the set of rules is �nite;

◮
The prediate rules_finite_def is used to make sure that these

onditions are satis�ed for every grammar in the formalization, either

user-de�ned or onstruted;

◮
A list of non-terminal symbols (ntl), a list of terminal symbols (tl)

and an upper bound on the length of the right-hand side of the rules

(n) must be supplied.

Marus Ramos Some Appliations September 26th, 2018 7 / 29

Basi De�nitions

Example

G = ({S′, A,B, a, b}, {a, b}, {S′ → aS′, S′ → b}, S′) generates the
language a∗b.

Indutive nt1: Type:= | S' | A | B.

Indutive t1: Type:= | a | b.

Indutive rs1: nt1 → list (nt1 + t1) → Prop:=

r1: rs1 S' [inr a; inl S'℄

| r2: rs1 S' [inr b℄.

Definition g1: fg nt1 t1:= {|

start_symbol:= S';

rules:= rs1;

rules_finite:= rs1_finite |}.

Marus Ramos Some Appliations September 26th, 2018 8 / 29

Basi De�nitions

Derivation

Substitution proess:

s1 derives s2 by appliation of zero or more rules: s1 ⇒
∗ s2.

Indutive derives

(non_terminal terminal : Type)

(g : fg non_terminal terminal)

: sf → sf → Prop :=

| derives_refl :

∀ s : sf,

derives g s s

| derives_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)

Marus Ramos Some Appliations September 26th, 2018 9 / 29

Basi De�nitions

Derivation

◮
Prediate generates: a derivation that begins with the start symbol

of the grammar;

◮
Prediate produes: a derivation that begins with the start symbol of

the grammar and ends with a sentene.

S ⇒ α1 ⇒

derives

︷ ︸︸ ︷

α2 ⇒ ... ⇒ αn−1
︸ ︷︷ ︸

generates

⇒ αn ⇒ ω

︸ ︷︷ ︸

produes

Marus Ramos Some Appliations September 26th, 2018 10 / 29

Basi De�nitions

Example

S ⇒ aS ⇒ aaS ⇒ aab

Lemma produes_g1_aab:

produes g1 [a; a; b℄.

Proof.

unfold produes.

unfold generates.

simpl.

apply derives_step with (s2:=[inr a; inr a℄)(left:=S')(right:=[inr b℄).

apply derives_step with (s2:=[inr a℄)(left:=S')(right:=[inr a;inl S'℄).

apply derives_start with (left:=S')(right:=[inr a;inl S'℄).

apply r11.

apply r11.

apply r12.

Qed.

Marus Ramos Some Appliations September 26th, 2018 11 / 29

Basi De�nitions

Grammar Equivalene

g1 ≡ g2
if they generate the same language, that is,

∀s, (S1 ⇒
∗

g1
s) ↔ (S2 ⇒

∗

g2
s)

Definition g_equiv

(non_terminal1 non_terminal2 terminal : Type)

(g1: fg non_terminal1 terminal)

(g2: fg non_terminal2 terminal): Prop:=

∀ s: list terminal,

produes g1 s ↔ produes g2 s.

Marus Ramos Some Appliations September 26th, 2018 12 / 29

Basi De�nitions

Context-Free Language

◮
A language is a set of strings over a given alphabet;

◮
A ontext-free language is a language that is generated by some

ontext-free grammar: L(G) = {w |S ⇒∗

g w}.

Definition lang (terminal: Type):= list terminal → Prop.

Definition lang_of_g (g: fg): lang :=

fun w: list terminal ⇒ produes g w.

Definition lang_eq (l k: lang) :=

∀ w, l w ↔ k w.

Definition fl (terminal: Type) (l: lang terminal): Prop:=

∃ non_terminal: Type,

∃ g: fg non_terminal terminal,

lang_eq l (lang_of_g g).

Marus Ramos Some Appliations September 26th, 2018 13 / 29

Appliations

Objetives

◮
Derive formal proofs that some well-known, lassi languages, are not

ontext-free. For this, we use the formalization of the Pumping

Lemma previously obtained by the authors in the Coq proof assistant.

For eah of these languages, we disuss the formalization of their non

ontext-freeness and make hopefully useful onsiderations about the

proof onstrution proess and the omplexity of the orresponding

formal and text proofs;

◮
Develop a formal proof of the fat that the lass of the ontext-free

languages is not losed under the intersetion operation. For that, we

follow the lassial proof that uses a ounter-example, whih in our

ase is one of the languages proved not to be ontext-free in the

previous objetive.

Marus Ramos Some Appliations September 26th, 2018 14 / 29

Appliations

Pumping Lemma

Let L be a ontext-free language de�ned over alphabet Σ. Then there is a

number n, depending only on L, suh that for every sentene α ∈ L, if
|α| ≥ n, then all of the following are true (|w| denotes the length of the

word w):

◮ ∃u, v, w, x, y.(α = uvwxy);

◮ |vx| ≥ 1;

◮ |vwx| ≤ n;

◮ ∀i.(uviwxiy ∈ L)

A typial use of the Pumping Lemma is to show that a given language is

not ontext-free by using the ontrapositive of the statement of the lemma.

The informal proof proeeds by ontraposition: the language is assumed to

be ontext-free, and this leads to a ontradition from whih one onludes

that the language in question an not be ontext-free.

Marus Ramos Some Appliations September 26th, 2018 15 / 29

Appliations

Languages

Classial languages onsidered:

1

square: {w ∈ {a}∗ | ∃ i, |w| = i2, i ≥ 0},

2

prime: {w ∈ {a}∗ | |w| is a prime number},

3

anbnn: {aibici | i ≥ 0}.

For eah:

◮
Text proof;

◮
Formal proof;

◮
Comparison.

Besides these languages, we also disuss:

4

anbnanbn: {anbnanbn |n ≥ 0}

5

ww: {ww |w ∈ {a, b}∗}

Marus Ramos Some Appliations September 26th, 2018 16 / 29

Appliations

Languages

Results:

1

square: straightforward;

(

∼
20x expansion fator)

2

prime: straightforward;

(

∼
20x expansion fator)

3

anbnn: muh harder (why?);

(

∼
100x expansion fator)

4

anbnanbn: muh muh harder (inomplete);

(

∼
200x expansion fator)

5

ww: also inomplete.

Let's take a look at anbnn.

Marus Ramos Some Appliations September 26th, 2018 17 / 29

Appliations

Language anbnn

Text proof

◮
Suppose that it is ontext-free and onsider the word anbncn, where n

is the onstant of the Pumping Lemma;

◮ anbncn ∈ anbnn and |anbncn| ≥ n. Thus, the Pumping Lemma an

be applied;

◮ anbncn = uvwxy for some u, v, w, x and y, with |uvwxy| = 3n,
1 ≤ |vwx| ≤ n and uviwxiy ∈ anbnn,∀i ≥ 0;

◮ vwx, due to its length limitation, ontains only one or two di�erent

kind of symbols;

◮
If it ontains only one kind of symbol, then v and x are also built out

of a single symbol and the pumping of v and x will hange the

number of a single symbol, while the number of the other two remain

unhanged. Thus, the new word an not belong to anbnn;

Marus Ramos Some Appliations September 26th, 2018 18 / 29

Appliations

Language anbnn

Text proof

◮
If it ontains two di�erent kinds of symbols, then v and x might

ontain one or two di�erent kinds of symbols eah. If both ontain

only one kind of symbol, pumping will hange the number of at most

two symbols, while the third will remain unhanged. If v or x ontain

two di�erent kinds of symbols, pumping will lead to a word where the

order is not respeted (�rst as, then bs then cs). In all ases, the new

word does not belong to anbnn;

◮
Hypothesis is false and anbnn is not ontext-free.

Marus Ramos Some Appliations September 26th, 2018 19 / 29

Appliations

Language anbnn

Formalization

Indutive terminal: Type:=

| a

| b

| .

Definition anbnn: lang terminal:=

fun (s: list terminal) ⇒
∃ x y z: list terminal,

∃ i: nat,

s = x ++y ++z ∧
length x = i ∧ na x = i ∧ length y = i ∧
nb y = i ∧ length z = i ∧ n z = i.

Marus Ramos Some Appliations September 26th, 2018 20 / 29

Appliations

Language anbnn

Formal proof

Steps:

◮
We have to reason about vwx (either vwx ∈ a∗b∗ or vwx ∈ b∗c∗);

◮ v and x might be empty (but not both);

◮
We onlude about |v|a, |v|b, |v|c, |x|a, |x|b and |x|c (whether eah is

= 0 or 6= 0);

◮
24 ases must be onsidered;

◮
2 are disarded;

◮
22 ases must be used to show that uv2wx2y an not belong to

anbnn;

◮
The formalization is long and tedious;

◮
Some simpli�ation an be pursued.

Marus Ramos Some Appliations September 26th, 2018 21 / 29

Appliations

Language anbnn

Formal proof

Marus Ramos Some Appliations September 26th, 2018 22 / 29

Appliations

Intersetion

Context-free languages are not losed under intersetion:

1

Formalize L1 = {anbncm |n ≥ 0 ∧m ≥ 0};

2

Prove L1 is ontext-free;

3

Formalize L2 = {ambncn |n ≥ 0 ∧m ≥ 0};

4

Prove L2 is ontext-free;

5

Formalize language intersetion;

6

Prove L1 ∩ L2 = anbncn;

7

Reall anbncn is previously proved not to be ontext-free;

Marus Ramos Some Appliations September 26th, 2018 23 / 29

Conlusions

Results

Languages:

◮
square: straightforward to build and easy to read;

◮
prime: straightforward to build and easy to read;

◮
anbnn: long and omplex with extensive ase analysis;

◮
anbnanbn: longer and more omplex;

Take anbnanbn, guess about v and x and pump them;

◮
ww: similar to anbnanbn;

Take anbnanbn, guess about v and x and pump them.

Why?

Intersetion:

◮
straightforward to build and easy to read.

Marus Ramos Some Appliations September 26th, 2018 24 / 29

Conlusions

Results

◮
Size and omplexity in proofs with ase analysis only;

◮
That is, only with languages anbnn, anbnanbn and ww;

◮
Does not our with languages square and prime and intersetion;

◮
Possible reasons:

◮
(*) Proof writing style (one tati per line; no proof searhing tati);

◮
(*) Parametrization an redue the number of funtions and lemmas;

◮
(**) Extensive ase analysis with no native support;

◮
(**) Text proofs hide many details that have to be expliitly stated.

Marus Ramos Some Appliations September 26th, 2018 25 / 29

Conlusions

Case analysis

Case analysis with lists (examples from anbnn and anbnanbn):

◮
Any string that is a substring of a∗b∗ belongs to a∗b∗;

◮
Any string with maximum length n that is a substring of anbncn

belongs to a∗b∗ | b∗c∗;

◮
Any string with maximum length n that is a substring of anbnanbn

belongs to a∗b∗ | b∗a∗.

Marus Ramos Some Appliations September 26th, 2018 26 / 29

Conlusions

Text proofs

Text proofs hide details (examples from anbnn):

◮
�due to its length limitation, ontains only one or two di�erent kind of

symbols�;

◮
�if it ontains only one kind of symbol, then ... are also built out of a

single symbol and the pumping of ... will hange the number of a

single symbol, while the number of the other two remain unhanged�;

◮
�if it ontains two di�erent kinds of symbols, then ...might ontain one

or two di�erent kinds of symbols eah�;

◮
�if both ontain only one kind of symbol, pumping will hange the

number of at most two symbols, while the third will remain

unhanged�;

◮
�if ... ontain two di�erent kinds of symbols, pumping will lead to a

word where the order is not respeted�.

Marus Ramos Some Appliations September 26th, 2018 27 / 29

Conlusions

Conlusions

Possible onsequenes:

◮
Future support (new libraries) for ombinatoris of strings (lists of

symbols) in Coq might help and simplify the formalization;

◮
More detailed (and thus self-explanatory) text proofs must be

onsidered.

To be used in undergraduate lasses as ase study.

Marus Ramos Some Appliations September 26th, 2018 28 / 29

Conlusions

Final remarks

◮
All sripts are publily available and an be exeuted in Coq 8.8.1

(July 2018);

◮
Appliation of a previously formalized lemma, fundamental to the

language lass;

◮
First known formal proofs that some lassial languages are not

ontext-free;

◮
Insights involving text and formal proofs;

◮
Helpful in teahing formal languages in a formal framework;

◮
Adds a new losure result to previous results onerning the lass of

the ontext-free languages.

Marus Ramos Some Appliations September 26th, 2018 29 / 29

	Context-Free Language Theory
	Basic Definitions
	Applications
	Conclusions

