
Formalization of simpli�
ation for
ontext-free grammars

Mar
us Viní
ius Midena Ramos

(UFPE/Re
ife & UNIVASF/Petrolina)

Ruy J. G. B. de Queiroz

(UFPE/Re
ife)

September 1st, 2015

10th LSFA, UFRN, Natal, RN

Mar
us Ramos CFG simpli�
ation September 1st, 2015 1 / 50

S
ope

The obje
tive of this work is to formalize a substantial part of
ontext-free

language theory in the Coq proof assistant, making it possible to reason

about it in a fully
he
ked environment, with all the related advantages.

◮
Formalization is the pro
ess of writing proofs su
h that they have a

pre
ise meaning over a simple and well-de�ned
al
ulus whose rules

an be automati
ally
he
ked by a ma
hine;

◮
Context-free language theory is fundamental in the representation and

study of arti�
ial languages, spe
ially programming languages, and in

the
onstru
tion of their pro
essors (
ompilers and interpreters);

◮
The formalization of
ontext-free language theory is a key to the

erti�
ation of
ompilers and programs, as well as to the development

of new languages and tools for
erti�ed programming.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 2 / 50

Context-Free Language Theory

Overview

◮
Part of Formal Language Theory (Chomsky Hierar
hy):

◮
Regular Languages;

◮
Context-Free Languages ;

◮
Context-Sensitive Languages;

◮
Re
ursively Enumerable Languages.

◮
Developed from mid 1950s to late 1970s;

◮
Relevant to the representation, study and implementation of arti�
ial

languages;

Mar
us Ramos CFG simpli�
ation September 1st, 2015 3 / 50

Context-Free Language Theory

Overview

In
ludes:

◮
Context-free grammars, pushdown automata and notations (e.g.

BNF);

◮
Equivalen
e of grammars and automata;

◮
Grammar simpli�
ation;

◮
Normal forms;

◮
Derivation trees, parsing and ambiguity;

◮
Determinism and non-determinism;

◮
Closure properties;

◮
De
idable and unde
idable problems;

◮
Relation with other language
lasses.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 4 / 50

General Pi
ture

Related Work

◮
Regular languages have already been formalized to a large extend;

◮
Some formalization of
ontext-free languages appeared in re
ent years,

mostly in HOL4 and Agda;

◮
Mostly on parser
erti�
ation or
erti�ed parser generation;

◮
Not mu
h on theory.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 5 / 50

General Pi
ture

Obje
tives

To formally state and prove the following fundamental results on

ontext-free language theory:

1

Closure properties (9th LSFA 2014):

◮
Union;

◮
Con
atenation;

◮
Kleene star.

2

Grammar simpli�
ation :

◮
Elimination of empty rules;

◮
Elimination of unit;

◮
Elimination of useless symbols;

◮
Elimination of ina

essible symbols.

3

Chomsky Normal Form;

4

Pumping Lemma.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 6 / 50

Basi
 De�nitions

Context-Free Grammar

G = (V,Σ, P, S), where:

◮ V is the vo
abulary of G;

◮ Σ is the set of terminal symbols;

◮ N = V \ Σ is the set of non-terminal symbols;

◮ P is the set of rules α→ β, with α ∈ N and β ∈ V ∗
;

◮ S ∈ N is the start symbol.

Re
ord
fg (non_terminal terminal : Type): Type:= {

start_symbol: non_terminal;

rules: non_terminal→ list (non_terminal + terminal) → Prop;

rules_finite:

∃ n: nat,

∃ ntl: nlist,
∃ tl: tlist,
rules_finite_def start_symbol rules n ntl tl }.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 7 / 50

Basi
 De�nitions

Context-Free Grammar

Making sure that
fg represents a
ontext-free grammar:

◮
General types might have an in�nite number of elements;

◮
We must
he
k that the rules of the grammar are built from �nite sets

of terminal and non-terminal symbols;

◮
We must also
he
k that the set of rules is �nite;

◮
The predi
ate rules_finite_def is used to make sure that these

onditions are satis�ed for every grammar in the formalization, either

user-de�ned or
onstru
ted;

◮
A list of non-terminal symbols (ntl), a list of terminal symbols (tl)

and an upper bound on the length of the right-hand side of the rules

(n) must be supplied.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 8 / 50

Basi
 De�nitions

Example

G = ({S′, A,B, a, b}, {a, b}, {S′ → aS′, S′ → b}, S′) generates the
language a∗b.

Indu
tive nt1: Type:= | S' | A | B.

Indu
tive t1: Type:= | a | b.

Indu
tive rs1: nt1 → list (nt1 + t1) → Prop:=

r1: rs1 S' [inr a; inl S'℄

| r2: rs1 S' [inr b℄.

Definition g1:
fg nt1 t1:= {|

start_symbol:= S';

rules:= rs1;

rules_finite:= rs1_finite |}.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 9 / 50

Basi
 De�nitions

Derivation

Substitution pro
ess:

s1 derives s2 by appli
ation of zero or more rules: s1 ⇒
∗ s2.

Indu
tive derives

(non_terminal terminal : Type)

(g :
fg non_terminal terminal)

: sf → sf → Prop :=

| derives_refl :

∀ s : sf,

derives g s s

| derives_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)

Mar
us Ramos CFG simpli�
ation September 1st, 2015 10 / 50

Basi
 De�nitions

Derivation

◮
Predi
ate generates: a derivation that begins with the start symbol

of the grammar;

◮
Predi
ate produ
es: a derivation that begins with the start symbol of

the grammar and ends with a senten
e.

S ⇒ α1 ⇒

derives

︷ ︸︸ ︷

α2 ⇒ ...⇒ αn−1
︸ ︷︷ ︸

generates

⇒ αn ⇒ ω

︸ ︷︷ ︸

produ
es

Mar
us Ramos CFG simpli�
ation September 1st, 2015 11 / 50

Basi
 De�nitions

Example

S ⇒ aS ⇒ aaS ⇒ aab

Lemma produ
es_g1_aab:

produ
es g1 [a; a; b℄.

Proof.

unfold produ
es.

unfold generates.

simpl.

apply derives_step with (s2:=[inr a; inr a℄)(left:=S')(right:=[inr b℄).

apply derives_step with (s2:=[inr a℄)(left:=S')(right:=[inr a;inl S'℄).

apply derives_start with (left:=S')(right:=[inr a;inl S'℄).

apply r11.

apply r11.

apply r12.

Qed.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 12 / 50

Basi
 De�nitions

Grammar Equivalen
e

g1 ≡ g2
if they generate the same language, that is,

∀s, (S1 ⇒
∗

g1
s)↔ (S2 ⇒

∗

g2
s)

Definition g_equiv

(non_terminal1 non_terminal2 terminal : Type)

(g1:
fg non_terminal1 terminal)

(g2:
fg non_terminal2 terminal): Prop:=

∀ s: list terminal,

produ
es g1 s ↔ produ
es g2 s.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 13 / 50

Basi
 De�nitions

Context-Free Language

◮
A language is a set of strings over a given alphabet;

◮
A
ontext-free language is a language that is generated by some

ontext-free grammar: L(G) = {w |S ⇒∗

g w}.

Definition lang (terminal: Type):= list terminal→ Prop.

Definition lang_of_g (g:
fg): lang :=

fun w: list terminal⇒ produ
es g w.

Definition lang_eq (l k: lang) :=

∀ w, l w ↔ k w.

Definition
fl (terminal: Type) (l: lang terminal): Prop:=

∃ non_terminal: Type,
∃ g:
fg non_terminal terminal,

lang_eq l (lang_of_g g).

Mar
us Ramos CFG simpli�
ation September 1st, 2015 14 / 50

Basi
 De�nitions

Methodology

For
losure properties, grammar simpli�
ation and Chomsky normal form:

1

Indu
tively de�ne the new non-terminal symbols (if ne
essary);

2

Indu
tively de�ne the rules of the new grammar;

3

De�ne the new grammar;

4

Show that the new grammar has the desired properties;

5

Consolidate the results.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 15 / 50

Grammar Simpli�
ation

Overview

Grammar simpli�
ation aims at obtaining new and simpler grammars that

are equivalent to the original ones:

◮
Simpler means:

◮
They
ontain only symbols and rules that are e�e
tively used in the

derivation of some senten
e;

◮
They do not
ontain unit rules (e.g. A→ B);

◮
They do not
ontain empty rules (e.g. A→ ǫ), ex
ept for a spe
ial

ase.

◮
Equivalent means that they generate the same language.

Important to redu
e the
omplexity of grammars and thus (i) simplify its

understanding, in
rease the e�
ien
y of parsers obtained from them and

(iii) allow their normalization.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 16 / 50

Grammar Simpli�
ation

Elimination of empty rules

Con
ept

◮
An empty rule r ∈ P is a rule whose right-hand side β is empty (e.g.

X → ǫ);

◮
We formalize that for all G, there exists G′

su
h that L(G) = L(G′)
and G′

has no empty rules, ex
ept for a single rule S → ǫ if ǫ ∈ L(G);
in this
ase, S (the initial symbol of G′

) does not appear on the

right-hand side of any rule in G′
.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 17 / 50

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Definition empty

(g:
fg terminal _) (s: non_terminal + terminal): Prop:=

derives g [s℄ [℄.

Indu
tive non_terminal'

(non_terminal : Type): Type:=

| Lift_nt: non_terminal→ non_terminal'

| New_ss.

Definition g_emp

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal' terminal :=

{| start_symbol:= New_ss;

rules:= g_emp_rules g;

rules_finite:= g_emp_finite g |}.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 18 / 50

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Indu
tive g_emp_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' → sf' → Prop :=

| Lift_dire
t :

∀ left: non_terminal,
∀ right: sf,
right 6= [℄ → rules g left right →
g_emp_rules g (Lift_nt left) (map symbol_lift right)

Mar
us Ramos CFG simpli�
ation September 1st, 2015 19 / 50

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

| Lift_indire
t:

∀ left: non_terminal,
∀ right: sf,
g_emp_rules g (Lift_nt left) (map symbol_lift right)→
∀ s1 s2: sf,

∀ s: non_terminal,

right = s1 ++(inl s) :: s2 →
empty g (inl s) →
s1 ++s2 6= [℄ →
g_emp_rules g (Lift_nt left) (map symbol_lift (s1 ++s2))

| Lift_start_emp:

g_emp_rules g New_ss [inl (Lift_nt (start_symbol g))℄.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 20 / 50

Grammar Simpli�
ation

Elimination of empty rules

Example

Suppose that X,A,B,C are non-terminals, of whi
h A,B and C are

nullable, a, b and c are terminals and X → aAbBcC is a rule of g. Then,

the above de�nitions assert that X → aAbBcC is a rule of g_emp g, and

also:

◮ X → aAbBc;

◮ X → abBcC;

◮ X → aAbcC;

◮ X → aAbc;

◮ X → abBc;

◮ X → abcC;

◮ X → abc.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 21 / 50

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Definition g_emp'

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg (non_terminal' _) terminal :=

{| start_symbol:= New_ss _;

rules:= g_emp'_rules g;

rules_finite:= g_emp'_finite g |}.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 22 / 50

Grammar Simpli�
ation

Elimination of empty rules

De�nitions

Indu
tive g_emp'_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' non_terminal→ sf' → Prop :=

| Lift_all:

∀ left: non_terminal' _,
∀ right: sf',
rules (g_emp g) left right → g_emp'_rules g left right

| Lift_empty:

empty g (inl (start_symbol g)) →
g_emp'_rules g (start_symbol (g_emp g)) [℄.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 23 / 50

Grammar Simpli�
ation

Elimination of empty rules

Corre
tness

Theorem g_emp'_
orre
t:

∀ g:
fg non_terminal terminal,

g_equiv (g_emp' g) g ∧
(generates_empty g → has_one_empty_rule (g_emp' g)) ∧
(∼ generates_empty g → has_no_empty_rules (g_emp' g)) ∧
start_symbol_not_in_rhs (g_emp' g).

Mar
us Ramos CFG simpli�
ation September 1st, 2015 24 / 50

Grammar Simpli�
ation

Elimination of empty rules

Proof Outline

The de�nition of g_equiv, when applied to the previous theorem, yields:

∀ s: senten
e,

produ
es (g_emp' g) s ↔ produ
es g s.

◮
For the → part, the strategy is to prove that for every rule

left→g_emp′ right, either left→g right is a rule of g or

left⇒∗

g right;

◮
For the ← part, the strategy is a more
ompli
ated one, and involves

indu
tion over the number of derivation steps in g.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 25 / 50

Grammar Simpli�
ation

Elimination of unit rules

Con
ept

◮
A unit rule r ∈ P is a rule whose right-hand side β
ontains a single

non-terminal symbol (e.g. X → Y);

◮
We formalize that for all G, there exists G′

su
h that L(G) = L(G′)
and G′

has no unit rules.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 26 / 50

Grammar Simpli�
ation

Elimination of unit rules

De�nitions

Indu
tive unit

(terminal non_terminal : Type)

(g:
fg terminal non_terminal)

(a: non_terminal)

: non_terminal→ Prop:=

| unit_rule:

∀ (b: non_terminal),

rules g a [inl b℄ → unit g a b

| unit_trans:

∀ b
: non_terminal,

unit g a b → unit g b
 → unit g a
.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 27 / 50

Grammar Simpli�
ation

Elimination of unit rules

De�nitions

Definition g_unit

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_unit_rules g;

rules_finite:= g_unit_finite g |}.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 28 / 50

Grammar Simpli�
ation

Elimination of unit rules

De�nitions

Indu
tive g_unit_rules

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_dire
t' :

∀ left: non_terminal,
∀ right: sf,
(∀ r: non_terminal, right 6= [inl r℄) →
rules g left right →
g_unit_rules g left right

Mar
us Ramos CFG simpli�
ation September 1st, 2015 29 / 50

Grammar Simpli�
ation

Elimination of unit rules

De�nitions

| Lift_indire
t':

∀ a b: non_terminal,

unit g a b →
∀ right: sf,
rules g b right →
(∀
: non_terminal, right 6= [inl
℄) →
g_unit_rules g a right.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 30 / 50

Grammar Simpli�
ation

Elimination of unit rules

Example

Suppose that N = {S′,X, Y, Z}, Σ = {a, b, c} and
P = {S′ → X,X → aX,X → Y, Y → XbY, Y → Z,Z → c}. The
previous de�nitions assert that P ′

has the following rules:

◮ S′ → aX;

◮ S′ → XbY ;

◮ S′ → c;

◮ X → aX;

◮ X → XbY ;

◮ X → c;

◮ Y → XbY ;

◮ Y → c;

◮ Z → c

Mar
us Ramos CFG simpli�
ation September 1st, 2015 31 / 50

Grammar Simpli�
ation

Elimination of unit rules

Corre
tness

Theorem g_unit_
orre
t:

∀ g:
fg non_terminal terminal,

g_equiv (g_unit g) g ∧ has_no_unit_rules (g_unit g).

Mar
us Ramos CFG simpli�
ation September 1st, 2015 32 / 50

Grammar Simpli�
ation

Elimination of unit rules

Proof Outline

Consider g_equiv (g_unit g) g of the previous statement:

◮
For the → part, the strategy adopted is to prove that for every rule

left→g_unit right of (g_unit g), either left→g right is a rule of g

or left⇒∗

g right;

◮
For the ← part, the strategy is also a more
ompli
ated one, and

involves indu
tion over a predi
ate that is equivalent to derives

(derives3), but generates the senten
e dire
tly without
onsidering the

appli
ation of a sequen
e of rules, whi
h allows one to abstra
t the

appli
ation of unit rules in g.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 33 / 50

Grammar Simpli�
ation

Elimination of useless symbols

Con
ept

◮
A symbol s ∈ V is useful if it is possible to derive a senten
e from it

using the rules of the grammar. Otherwise, s is
alled an useless

symbol;

◮
A useful symbol s is one su
h that s⇒∗ ω, with ω ∈ Σ∗

;

◮
We formalize that, for all G su
h that L(G) 6= ∅, there exists G′

su
h

that L(G) = L(G′) and G′
has no useless symbols.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 34 / 50

Grammar Simpli�
ation

Elimination of useless symbols

De�nitions

Definition useful

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

mat
h s with

| inr t ⇒ True

| inl n ⇒ ∃ s: senten
e, derives g [inl n℄ (map term_lift s)

end.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 35 / 50

Grammar Simpli�
ation

Elimination of useless symbols

De�nitions

Definition g_use

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal terminal:=

{| start_symbol:= start_symbol g;

rules:= g_use_rules g;

rules_finite:= g_use_finite g |}.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 36 / 50

Grammar Simpli�
ation

Elimination of useless symbols

De�nitions

Indu
tive g_use_rules

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_use :

∀ left: non_terminal,
∀ right: sf,
rules g left right →
useful g (inl left) →
(∀ s: non_terminal + terminal, In s right → useful g s) →
g_use_rules g left right.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 37 / 50

Grammar Simpli�
ation

Elimination of useless symbols

Corre
tness

Theorem g_use_
orre
t:

∀ g:
fg non_terminal terminal,

non_empty g → g_equiv (g_use g) g ∧ has_no_useless_symbols (g_use g).

Mar
us Ramos CFG simpli�
ation September 1st, 2015 38 / 50

Grammar Simpli�
ation

Elimination of useless symbols

Proof Outline

Consider g_equiv (g_use g) g of the previous statement:

◮
The → part of the g_equiv proof is straightforward, sin
e every rule

of g_use is also a rule of g;

◮
For the
onverse, it is ne
essary to show that every symbol used in a

derivation of g is useful, and thus all the rules used in this derivation

also appear in g_use.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 39 / 50

Grammar Simpli�
ation

Elimination of ina

essible symbols

Con
ept

◮
A symbol s ∈ V is a

essible if it is part of at least one string

generated from the root symbol of the grammar. Otherwise, it is

alled an ina

essible symbol;

◮
An a

essible symbol s is one su
h that S ⇒∗ αsβ, with α, β ∈ V ∗

;

◮
We formalize that for all G, there exists G′

su
h that L(G) = L(G′)
and G′

has no ina

essible symbols.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 40 / 50

Grammar Simpli�
ation

Elimination of ina

essible symbols

De�nitions

Definition a

essible

(terminal non_terminal : Type)

(g :
fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

∃ s1 s2: sf, derives g [inl (start_symbol g)℄ (s1 ++s :: s2).

Mar
us Ramos CFG simpli�
ation September 1st, 2015 41 / 50

Grammar Simpli�
ation

Elimination of ina

essible symbols

De�nitions

Definition g_a

(terminal non_terminal : Type)

(g :
fg non_terminal terminal)

:
fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_a

_rules g;

rules_finite:= g_a

_finite g |}.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 42 / 50

Grammar Simpli�
ation

Elimination of ina

essible symbols

De�nitions

Indu
tive g_a

_rules

(terminal non_terminal : Type)

(g :
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_a

 : ∀ left: non_terminal,
∀ right: sf,
rules g left right → a

essible g (inl left) →
g_a

_rules g left right.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 43 / 50

Grammar Simpli�
ation

Elimination of ina

essible symbols

Corre
tness

Theorem g_a

_
orre
t:

∀ g:
fg non_terminal terminal,

g_equiv (g_a

 g) g ∧ has_no_ina

essible_symbols (g_a

 g).

Mar
us Ramos CFG simpli�
ation September 1st, 2015 44 / 50

Grammar Simpli�
ation

Elimination of ina

essible symbols

Proof Outline

Consider g_equiv (g_a

 g) g of the previous statement:

◮
The → part of the g_equiv proof is also straightforward, sin
e every

rule of g_a

 is also a rule of g;

◮
For the
onverse, it is ne
essary to show that every symbol used in the

derivation of g is a

essible, and thus the rules used in this derivation

also appear in g_a

.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 45 / 50

Grammar Simpli�
ation

Uni�
ation

All in the Same Grammar

Theorem g_simpl:

∀ g:
fg non_terminal terminal,

non_empty g →
∃ g':
fg (non_terminal' non_terminal) terminal,

g_equiv g' g ∧
has_no_ina

essible_symbols g' ∧
has_no_useless_symbols g' ∧
(generates_empty g → has_one_empty_rule g') ∧
(∼ generates_empty g → has_no_empty_rules g') ∧
has_no_unit_rules g' ∧
start_symbol_not_in_rhs g'.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 46 / 50

Grammar Simpli�
ation

Uni�
ation

Proof Outline

Requires the proof that
ertain operations preserve some properties of the

original grammar:

Mar
us Ramos CFG simpli�
ation September 1st, 2015 47 / 50

Con
lusions

This Formalization

◮
Comprehensive set of fundamental results on
ontext-free language

theory;

◮
First formalization in Coq (preliminary work by Filliâtre);

◮
Enables the formalization of the Chomsky Normal Form and the

Pumping Lemma;

◮
Framework to advan
e with the formalization of CFLs and related

theories.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 48 / 50

Con
lusions

Current Status

◮
All obje
tives were rea
hed in August/2015 (formalization
omplete);

◮
First formalization at all of the Pumping Lemma ;

◮
600+ lemmas and theorems, 20+ libraries, 25.000+ lines of s
ripts;

◮
2 year e�ort;

◮
De
larative style;

◮
Closer to textbook de�nitions;

◮
More abstra
t to deal with;

◮
Does not allow for the extra
tion of
erti�ed programs;

◮
E�
ien
y issues;

◮
Main obje
tive was the Pumping Lemma.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 49 / 50

Con
lusions

Further Work

◮
Simplify the formalization with SSRre�e
t;

◮
Code extra
tion and
erti�ed algorithms;

◮
Formalize pushdown automata and other results of CFLs.

Mar
us Ramos CFG simpli�
ation September 1st, 2015 50 / 50

	Context-Free Language Theory
	General Picture
	Basic Definitions
	Grammar Simplification
	Conclusions

