Formalization of simplification for context-free grammars

Marcus Vinicius Midena Ramos
(UFPE/Recife & UNIVASF/Petrolina)

Ruy J. G. B. de Queiroz
(UFPE/Recife)

September 1st, 2015

10th LSFA, UFRN, Natal, RN

Marcus Ramos CFG simplification September 1st, 2015

Scope

The objective of this work is to formalize a substantial part of context-free
language theory in the Coq proof assistant, making it possible to reason
about it in a fully checked environment, with all the related advantages.

» Formalization is the process of writing proofs such that they have a
precise meaning over a simple and well-defined calculus whose rules
can be automatically checked by a machine;

» Context-free language theory is fundamental in the representation and
study of artificial languages, specially programming languages, and in
the construction of their processors (compilers and interpreters);

» The formalization of context-free language theory is a key to the
certification of compilers and programs, as well as to the development
of new languages and tools for certified programming.

Marcus Ramos CFG simplification September 1st, 2015 2 /50

Context-Free Language Theory

Overview

» Part of Formal Language Theory (Chomsky Hierarchy):

» Regular Languages;

» Context-Free Languages ;

» Context-Sensitive Languages;

» Recursively Enumerable Languages.

» Developed from mid 1950s to late 1970s;

» Relevant to the representation, study and implementation of artificial
languages;

Marcus Ramos CFG simplification September 1st, 2015 3 /50

Context-Free Language Theory

Overview

Includes:

>

Context-free grammars, pushdown automata and notations (e.g.
BNF);

Equivalence of grammars and automata;
Grammar simplification;

Normal forms;

Derivation trees, parsing and ambiguity;
Determinism and non-determinism;
Closure properties;

Decidable and undecidable problems;

Relation with other language classes.

Marcus Ramos CFG simplification September 1st, 2015

General Picture

Related Work

v

Regular languages have already been formalized to a large extend;

v

Some formalization of context-free languages appeared in recent years,
mostly in HOL4 and Agda;

Mostly on parser certification or certified parser generation;

v

v

Not much on theory.

Marcus Ramos CFG simplification September 1st, 2015 5 / 50

General Picture

Objectives

To formally state and prove the following fundamental results on
context-free language theory:
© Closure properties (9th LSFA 2014):
» Union;
» Concatenation;
» Kleene star.
© Grammar simplification :
Elimination of empty rules;
Elimination of unit;
Elimination of useless symbols;
Elimination of inaccessible symbols.

© Chomsky Normal Form;
© Pumping Lemma.

vV vy VvYyy

Marcus Ramos CFG simplification September 1st, 2015

Basic Definitions

Context-Free Grammar

G = (V,%,P,S), where:
» V is the vocabulary of G;

v

3 is the set of terminal symbols;

v

N =V \ X is the set of non-terminal symbols;
P is the set of rules o — B, with o« € N and 8 € V*;
» S € N is the start symbol.

v

Record cfg (non_terminal terminal : Type): Type:= {
start_symbol: non_terminal,
rules: non_terminal — list (non_terminal + terminal) — Prop;
rules_finite:

d n: nat,

3 ntl: nlist,

3 tl: tlist,

rules_finite_def start_symbol rules n ntl tl }.

Marcus Ramos CFG simplification September 1st, 2015

Basic Definitions

Context-Free Grammar

Making sure that cfg represents a context-free grammar:

>

>

General types might have an infinite number of elements;

We must check that the rules of the grammar are built from finite sets
of terminal and non-terminal symbols;

We must also check that the set of rules is finite;

The predicate rules_finite_def is used to make sure that these
conditions are satisfied for every grammar in the formalization, either
user-defined or constructed;

A list of non-terminal symbols (nt1), a list of terminal symbols (t1)

and an upper bound on the length of the right-hand side of the rules
(n) must be supplied.

Marcus Ramos CFG simplification September 1st, 2015 8 / 50

Basic Definitions

Example

G=({5,A, B, a,b},{a,b},{S — aS", 5" — b},S’) generates the

language a*b.

Inductive ntl: Type:=|S | A| B.

Inductive t1: Type:= | a | b.

Inductive rsl: ntl — list (ntl + tl) — Prop:=
rl: rs1 S’ [inr a; inl S']

| r2: rs1S' [inr b].

Definition gl: cfgntl t1:= {]
start_symbol:= S’;

rules:= rsli;

rules_finite:= rsi_finite |}.

Marcus Ramos CFG simplification

September 1st, 2015

Basic Definitions

Derivation

Substitution process:
s1 derives so by application of zero or more rules: s; =* so.

Inductive derives

(non_terminal terminal : Type)

(g : cfgnon_terminal terminal)
sf — sf — Prop =

| derives_refl:
Vs : sf,
derives g s s

| derives_step:
V (sl s2s3: sf)
vV (left : non_terminal)
V (right : sf),
derives g s1 (s2 ++inl left :: s3) —
rules g left right — derives g s1 (s2 ++right ++s3)

Marcus Ramos CFG simplification September 1st, 2015

Basic Definitions

Derivation

» Predicate generates: a derivation that begins with the start symbol
of the grammar;

» Predicate produces: a derivation that begins with the start symbol of
the grammar and ends with a sentence.

derives
7\

S=2a=>wm=>.. o 1=>0, >w

generates

~
produces

Marcus Ramos CFG simplification September 1st, 2015

Basic Definitions

Example

S = aS = aaS = aab

Lemma produces_gl_aab:

produces gl [a; a; b].

Proof.

unfold produces.

unfold generates.

simpl.

apply derives_step with (s2:=[inr a; inr a])(left:=S')(right:=[inr b]).
apply derives_step with (s2:=[inr a])(left:=S’)(right:=[inr a;inl S']).
apply derives_start with (left:=S')(right:=[inr a;inl S']).

apply ril.

apply ril.

apply ri2.

Qed.

Marcus Ramos CFG simplification September 1st, 2015 12 / 50

Basic Definitions

Grammar Equivalence

g1 =92
if they generate the same language, that is,
Vs, (S1 =0 s) <> (S =0 s)

Definition g_equiv

(non_terminall non_terminal2 terminal : Type)
(gl: cfg non_terminall terminal)

(g2: cfg non_terminal2 terminal): Prop:=

V s: list terminal,

produces gl s <+ produces g2 s.

Marcus Ramos CFG simplification September 1st, 2015

Basic Definitions

Context-Free Language

» A language is a set of strings over a given alphabet;

» A context-free language is a language that is generated by some
context-free grammar: L(G) = {w|S =} w}.

Definition lang (terminal: Type):= list terminal — Prop.

Definition lang_of_g (g: cfg): lang :=
fun w: list terminal = produces g w.

Definition lang_eq (1 k: lang) :=
Vw lw+kw

Definition cfl (terminal: Type) (1: lang terminal): Prop:=
J non_terminal: Type,

J g cfgnon_terminal terminal,

lang_eql (lang_of_g g).

Marcus Ramos CFG simplification September 1st, 2015 14 / 50

Basic Definitions

Methodology

For closure properties, grammar simplification and Chomsky normal form:
O Inductively define the new non-terminal symbols (if necessary);
© Inductively define the rules of the new grammar;
© Define the new grammar;
© Show that the new grammar has the desired properties;
© Consolidate the results.

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Overview

Grammar simplification aims at obtaining new and simpler grammars that
are equivalent to the original ones:
» Simpler means:
» They contain only symbols and rules that are effectively used in the
derivation of some sentence;
» They do not contain unit rules (e.g. A — B);
» They do not contain empty rules (e.g. A — €), except for a special
case.
» Equivalent means that they generate the same language.

Important to reduce the complexity of grammars and thus (i) simplify its
understanding, increase the efficiency of parsers obtained from them and
(iii) allow their normalization.

Marcus Ramos CFG simplification September 1st, 2015 16 / 50

Grammar Simplification

Elimination of empty rules
Concept

» An empty rule r € P is a rule whose right-hand side (3 is empty (e.g.
X —e);

» We formalize that for all G, there exists G’ such that L(G) = L(G’)
and G’ has no empty rules, except for a single rule S — € if e € L(G);

in this case, S (the initial symbol of G’) does not appear on the
right-hand side of any rule in G’.

Marcus Ramos CFG simplification September 1st, 2015 17 / 50

Grammar Simplification

Elimination of empty rules

Definitions

Definition empty
(g: cfg terminal _) (s: non_terminal + terminal): Prop:=
derives g [s] [].

Inductive non_terminal’

(non_terminal : Type): Type:=

| Lift_nt: non_terminal — non_terminal’
| New_ss.

Definition g_emp
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal’ terminal :=
{| start_symbol:= New_ss;
rules:= g_emp_rules g;
rules_finite:= g_emp_finite g |}.

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of empty rules

Definitions

Inductive g_emp_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal’ — sf' — Prop =
| Lift_direct:
V left: non_terminal,
V right: sf,
right #[] — rules g left right —
g_emp_rules g (Lift_nt left) (map symbol_lift right)

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of empty rules

Definitions

| Lift_indirect:

V left: non_terminal,

V right: sf,

g_emp_rules g (Lift_nt left) (map symbol_lift right)—

V sl s2: sf,

¥ s: non_terminal,

right = s1 ++(inl s) 11 82 —

empty g (inl s) —

sl++s2 #[] —

g_emp_rules g (Lift_nt left) (map symbol_lift (sl ++s2))
| Lift_start_emp:

g_emp_rules g New_ss [inl (Lift_nt (start_symbol g))].

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of empty rules

Example

Suppose that X, A, B, C are non-terminals, of which A, B and C are
nullable, a,b and c are terminals and X — aAbBcC is a rule of g. Then,
the above definitions assert that X — aAbBcC is a rule of g_emp g, and
also:

» X — aAbBc;
» X — abBcC;
X — aAbeC;
X — aAbc;
X — abBc;
X — abeC;
X — abe.

v

v

v

v

v

Marcus Ramos CFG simplification September 1st, 2015 21 / 50

Grammar Simplification

Elimination of empty rules
Definitions

Definition g_emp’
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg (non_terminal' _) terminal :=
{| start_symbol:= New_ss _;
rules:= g_emp _rules g;
rules_finite:= g_emp _finite g |}.

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of empty rules

Definitions

Inductive g_emp'_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal non_terminal — sf' — Prop :=
| Lift_all:
V left: non_terminal’ _,
YV right: sf’,
rules (g_emp g) left right — g_emp'_rules g left right
| Lift_empty:
empty g (inl (start_symbol g)) —
g_emp'_rules g (start_symbol (g_emp g)) [].

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of empty rules

Correctness

Theorem g_emp'_correct:

V g cfg non_terminal terminal,

g_equiv (g_emp’ g) g A

(generates_empty g — has_one_empty_rule (g_emp' g)) A
(~ generates_empty g — has_no_empty_rules (g_emp' g)) A
start_symbol_not_in_rhs (g_emp' g).

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of empty rules
Proof Outline

The definition of g_equiv, when applied to the previous theorem, yields:

V s: sentence,
produces (g_emp' g) s <> produces g s.

» For the — part, the strategy is to prove that for every rule
left =4 emp Tight, either left —, right is a rule of g or
left =g right;

» For the < part, the strategy is a more complicated one, and involves
induction over the number of derivation steps in g.

Marcus Ramos CFG simplification September 1st, 2015 25 / 50

Grammar Simplification

Elimination of unit rules
Concept

» A unit rule r € P is a rule whose right-hand side /3 contains a single
non-terminal symbol (e.g. X — Y);

» We formalize that for all G, there exists G’ such that L(G) = L(G")
and G’ has no unit rules.

Marcus Ramos CFG simplification September 1st, 2015 26 / 50

Grammar Simplification

Elimination of unit rules

Definitions

Inductive unit
(terminal non_terminal : Type)
(g: cfg terminal non_terminal)
(a: non_terminal)

non_terminal — Prop:=
| unit_rule:

v (b: non_terminal),

rules g a [inl b] »unit gab
| unit_trans:

V b c: non_terminal,

unit gab —unit gbc - unit gac.

Marcus Ramos CFG simplification

September 1st, 2015

Grammar Simplification

Elimination of unit rules
Definitions

Definition g_unit
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal terminal :=
{| start_symbol:= start_symbol g;
rules:= g_unit_rules g;
rules_finite:= g_unit_finite g |}.

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of unit rules

Definitions

Inductive g_unit_rules
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal — sf — Prop =
| Lift_direct':
V left: non_terminal,
vV right: sf,
(V r:non_terminal, right # [inl r]) —
rules g left right —
g_unit_rules g left right

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of unit rules

Definitions

| Lift_indirect”
V a b: non_terminal,
unit gab —
vV right: sf,
rules g b right —
(V c:non_terminal, right # [inl c]) —
g_unit_rules g a right.

Marcus Ramos CFG simplification September 1st, 2015 30 / 50

Grammar Simplification

Elimination of unit rules

Example

Suppose that N = {5, X, Y, Z}, ¥ = {a, b, ¢} and
P={S—>XX—>aX, XYY > XY > Z 7Z—c}. The
previous definitions assert that P’ has the following rules:

» S — aX;
» S — XbvY;
» 5" ¢

» X — aX;
» X — XbY;
X — ¢
Y — XbY;
Y — ¢

v

v

v

> Z —c

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of unit rules

Correctness

Theorem g_unit_correct:
V g cfg non_terminal terminal,
g_equiv (g_unit g) g A has_no_unit_rules (g_unit g).

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of unit rules
Proof Outline

Consider g_equiv (g_unit g) g of the previous statement:

» For the — part, the strategy adopted is to prove that for every rule
left =4 unit right of (g_unit g), either left —, right is a rule of g
or left :_>; right;

» For the < part, the strategy is also a more complicated one, and
involves induction over a predicate that is equivalent to derives
(derives3), but generates the sentence directly without considering the
application of a sequence of rules, which allows one to abstract the
application of unit rules in g.

Marcus Ramos CFG simplification September 1st, 2015 33 /50

Grammar Simplification

Elimination of useless symbols
Concept

» A symbol s € V is useful if it is possible to derive a sentence from it
using the rules of the grammar. Otherwise, s is called an useless
symbol;

» A useful symbol s is one such that s =* w, with w € ¥*;

» We formalize that, for all G such that L(G) # (), there exists G’ such
that L(G) = L(G’) and G’ has no useless symbols.

Marcus Ramos CFG simplification September 1st, 2015 34 / 50

Grammar Simplification

Elimination of useless symbols
Definitions

Definition useful

(terminal non_terminal : Type)

(g: cfgnon_terminal terminal)

(s: non_terminal + terminal): Prop:=
match s with

| inr t = True

inl n = d s: sentence, derives inl n| (map term_lift s
g P
end.

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of useless symbols
Definitions

Definition g_use
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal terminal:=
{| start_symbol:= start_symbol g;
rules:= g_use_rules g;
rules_finite:= g_use_finiteg |}.

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of useless symbols

Definitions

Inductive g_use_rules
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal — sf — Prop =
| Lift_use:

V left: non_terminal,

vV right: sf,

rules g left right —

useful g (inl left) —

(V s:non_terminal + terminal, In s right — useful g s) —

g_use_rules g left right.

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of useless symbols

Correctness

Theorem g_use_correct:
V g cfg non_terminal terminal,
non_empty g — g_equiv (g_use g) g A has_no_useless_symbols (g_use g).

Marcus Ramos CFG simplification September 1st, 2015 38 / 50

Grammar Simplification

Elimination of useless symbols
Proof Outline

Consider g_equiv (g_use g) g of the previous statement:

» The — part of the g_equiv proof is straightforward, since every rule
of g_use is also a rule of g;

» For the converse, it is necessary to show that every symbol used in a
derivation of g is useful, and thus all the rules used in this derivation
also appear in g_use.

Marcus Ramos CFG simplification September 1st, 2015 39 / 50

Grammar Simplification

Elimination of inaccessible symbols
Concept

» A symbol s € V is accessible if it is part of at least one string
generated from the root symbol of the grammar. Otherwise, it is
called an inaccessible symbol,

» An accessible symbol s is one such that S =* asg, with a, 5 € V*;

» We formalize that for all G, there exists G’ such that L(G) = L(G’)
and G’ has no inaccessible symbols.

Marcus Ramos CFG simplification September 1st, 2015 40 / 50

Grammar Simplification

Elimination of inaccessible symbols

Definitions

Definition accessible

(terminal non_terminal : Type)

(g : cfgnon_terminal terminal)

(s: non_terminal + terminal): Prop:=

3 s1 s2: sf, derives g [inl (start_symbol g)] (s1 ++s :: s2).

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of inaccessible symbols
Definitions

Definition g_acc
(terminal non_terminal : Type)
(g : cfgnon_terminal terminal)
cfg non_terminal terminal :=
{| start_symbol:= start_symbol g;
rules:= g_acc_rules g;
rules_finite:= g_acc_finiteg |}.

Marcus Ramos CFG simplification

September 1st, 2015

Grammar Simplification

Elimination of inaccessible symbols

Definitions

Inductive g_acc_rules

(terminal non_terminal : Type)

(g : cfgnon_terminal terminal)

: non_terminal — sf — Prop =

| Lift_acc :V left: non_terminal,
vV right: sf,
rules g left right — accessible g (inl left) —
g_acc_rules g left right.

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of inaccessible symbols
Correctness

Theorem g_acc_correct:
V g cfg non_terminal terminal,
g_equiv (g_acc g) g A has_no_inaccessible_symbols (g_acc g).

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Elimination of inaccessible symbols
Proof Outline

Consider g_equiv (g_acc g) g of the previous statement:

» The — part of the g_equiv proof is also straightforward, since every
rule of g_acc is also a rule of g;

» For the converse, it is necessary to show that every symbol used in the
derivation of g is accessible, and thus the rules used in this derivation
also appear in g_acc.

Marcus Ramos CFG simplification September 1st, 2015 45 / 50

Grammar Simplification

Unification

All in the Same Grammar

Theorem g_simpl:

V g: cfg non_terminal terminal,

non_empty g —

Jg': cfg (non_terminal non_terminal) terminal,

g_equivg gA

has_no_inaccessible_symbols g' A

has_no_useless_symbols g' A

(generates_empty g — has_one_empty_ruleg') A
(~ generates_empty g — has_no_empty_rules g') A
has_no_unit_rules g A
start_symbol_not_in_rhs g’

Marcus Ramos CFG simplification September 1st, 2015

Grammar Simplification

Unification
Proof Outline

Requires the proof that certain operations preserve some properties of the
original grammar:

No useless symbols AND
No unit rules AND
No empty rules No empty rules

Original grammar No unit rules AND No inaccessible symbols AND
No empty rules No useless symbols AND
No unit rules AND
No empty rules

Marcus Ramos i ificati September 1st, 2015 47 / 50

Conclusions

This Formalization

» Comprehensive set of fundamental results on context-free language
theory;

» First formalization in Coq (preliminary work by Filliatre);

» Enables the formalization of the Chomsky Normal Form and the
Pumping Lemma;

» Framework to advance with the formalization of CFLs and related
theories.

Marcus Ramos CFG simplification September 1st, 2015 48 / 50

Conclusions

Current Status

» All objectives were reached in August/2015 (formalization complete);
» First formalization at all of the Pumping Lemma ;

» 600+ lemmas and theorems, 20+ libraries, 25.000+ lines of scripts;
> 2 year effort;

» Declarative style;

v

Closer to textbook definitions;

More abstract to deal with;

Does not allow for the extraction of certified programs;
Efficiency issues;

Main objective was the Pumping Lemma.

vV vy vYyy

Marcus Ramos CFG simplification September 1st, 2015

Conclusions

Further Work

» Simplify the formalization with SSRreflect;
» Code extraction and certified algorithms;

» Formalize pushdown automata and other results of CFLs.

Marcus Ramos CFG simplification September 1st, 2015

	Context-Free Language Theory
	General Picture
	Basic Definitions
	Grammar Simplification
	Conclusions

