
LSFA 2014

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 1 / 59

Formalization of losure properties for

ontext-free grammars

Marus Viníius Midena Ramos

UFPE/UNIVASF

September 09, 2014

mvmr�in.ufpe.br

marus.ramos�univasf.edu.br

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 2 / 59

Introdution

Pro�le

◮
Eletronis Engineering at Universidade de São Paulo in 1982;

◮
Master in Digital Systems at Universidade de São Paulo in 1991;

◮
Teahing experiene with programming languages, ompilers, formal

languages, automata theory and omputation theory sine 1991;

◮
Current position at Universidade Federal do Vale do São Franiso

(Petrolina-PE/Juazeiro-BA) sine 2008;

◮
PhD in Computer Siene student at Universidade Federal de

Pernambuo sine 2011.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 3 / 59

Introdution

Bakground

◮
Experiene in teahing language and automata theory;

◮
Book �Linguagens Formais� published in 2009 (with J.J. Neto and I.S.

Vega);

◮
Algorithms were used instead of demonstrations for most theorems;

◮
Interest in formalization after studying logi, lambda alulus, type

theory and Coq;

◮
Desire to follow the lines of the book and formalize its ontents;

◮
Related work over reent years, usually with a restrited fous.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 4 / 59

Introdution

Current work

◮
Formal mathematis;

◮
Interative theorem proving;

◮
Context-free language theory formalization;

◮
Proof assistants.

◮
Coq.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 5 / 59

Introdution

Summary

1

Introdution

2

Proof Assistants

3

Calulus of Construtions with Indutive De�nitions

4

Coq

5

Formalization Projets

6

Current work

7

Conlusions

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 6 / 59

Introdution

History and pratie of theorem proving

◮
Theorem proofs:

◮
Informal;

◮
Di�ult to build;

◮
Di�ult to hek.

◮
Formalization (�omputer enoded mathematis�) is an alternative;

◮
Computer-aided reasoning;

◮
Use of proof assistants, also known as interative theorem provers.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 7 / 59

Introdution

Formal mathematis

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 8 / 59

Proof Assistants

Charateristis

◮
Software tools that assist the user in theorem proving and program

development;

◮
First initiative dates from 1967 (Automath, De Bruijn);

◮
Many provers are available today (Coq, Agda, Mizar, HOL, Isabelle,

Matita, Nuprl...);

◮
Interative;

◮
Graphial interfae;

◮
Proof/program heking;

◮
Proof/program onstrution.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 9 / 59

Proof Assistants

Usage

1

The user writes a theorem (proposition) in �rst-order logi or a type

expression (spei�ation);

2

The onstruts diretly or indiretly:

◮
A proof of the theorem;

◮
A program (term) that omplies to the spei�ation.

3

Diretly: the proof/term is written in the formal language aepted by

the assistant;

4

Indiretly: the proof/term is built with the assistane of an interative

�tatis� language:

5

In either ase, the assistant heks that the proof/term omplies to

the theorem/spei�ation.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 10 / 59

Proof Assistants

Chek and/or onstrut

◮
Proof assistants hek that proofs/terms are orretly onstruted;

◮
This is done via simple type-heking algorithms;

◮
Automated proof/term onstrution might exist is some ases, to

some extent, but is not the main fous;

◮
Thus the name �proof assistant�;

◮
Automated theorem proo�ng might be pursued, due to �proof

irrelevane�;

◮
Automated program development, on the other hand, is unrealisti.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 11 / 59

Proof Assistants

Main bene�ts

◮
Proofs and programs an be mehanially heked, saving time and

e�ort and inreasing reliability;

◮
Cheking is e�ient;

◮
Results an be easily stored and retrieved for use in di�erent ontexts;

◮
Tatis help the user to onstrut proofs/programs;

◮
User gets deeper insight into the nature of his proofs/programs,

allowing further improvement.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 12 / 59

Proof Assistants

Appliations

◮
Formalization and veri�ation of theorems and whole theories;

◮
Veri�ation of omputer programs;

◮
Corret software development;

◮
Automati review of large and omplex proofs submitted to journals;

◮
Veri�ation of hardware and software omponents.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 13 / 59

Proof Assistants

Drawbaks

◮
Failures in infrastruture may derease on�dene in the results (proof

assistant ode, language proessors, operating system, hardware et);

◮
Size of formal proofs;

◮
Redued numer of people using proof assistants;

◮
Slowly inreasing learning urve;

◮
Resemblane of omputer ode keeps pure mathematiians

uninterested.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 14 / 59

Calulus of Construtions with Indutive De�nitions

General

A rihly typed lambda alulus extended with indutive de�nitions.

◮
Calulus of Construtions developed by Thierry Coquand;

◮
Construtive type theory;

◮
Later extended with indutive de�nitions;

◮
Used as the mathematial language of the Coq proof assistant

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 15 / 59

Calulus of Construtions with Indutive De�nitions

Calulus of Construtions

◮
All logial operators (→,∧,∨,¬ and ∃) are de�ned in terms of the

universal quanti�er (∀), using �dependent types�;

◮
Types and programs (terms) have the same syntatial struture;

◮
Types have a type themselves (alled �Sort�);

◮
Base sorts are �Prop� (the type of propositions) and �Set� (the type
of small sets);

◮ Prop : Type(1), Set : Type(1), Type(i) : Type(i+ 1), i ≥ 1;

◮ S = {Prop, Set, Type(i)|i ≥ 1} is the set of sorts;

◮
Various datatypes an be de�ned (naturals, booleans et);

◮
Set of typing and onversion rules.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 16 / 59

Calulus of Construtions with Indutive De�nitions

Indutive De�nitions

Finite de�nition of in�nite sets.

◮
�Construtors� de�ne the elements of a set;

◮
Construtors an be base elements of the set;

◮
Construtors an be a funtions that takes set elements and return

new set elements.

◮
Manipulation is done via �pattern mathing� over the indutive

de�nitions.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 17 / 59

Coq

Overview

◮
Developed by Huet/Coquand at INRIA in 1984;

◮
First version released in 1989, indutive types were added in 1991;

◮
Continuous development and inreasing usage sine then;

◮
The underlying logi is the Calulus of Construtions with Indutive

De�nitions;

◮
It is implemented by a typed funtional programming with a higher

order logi language alled Gallina;

◮
Interation with the user is via a ommand language alled Vernaular;

◮
Construtive logi with large standard library and user ontributions

base;

◮
Extensible environment;

◮
All resoures freely available from http://oq.inria.fr/.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 18 / 59

http://coq.inria.fr/

Coq

User session

The proof an be onstruted diretly ou indiretly.

In the indiret ase,

◮
The initial goal is the theorem/spei�ation supplied by the user;

◮
The environment and the ontext are initially empty;

◮
The appliation of a �tatis� substitutes the urrent goal for zero ou

more subgoals;

◮
The ontext hanges and might inorporate new hypotheses;

◮
The proess is repeated for eah subgoal, until no one subgoal remains;

◮
The proof/term is onstruted from the sequene of tatis used.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 19 / 59

Coq

Tatis usage

◮
Inferene rules map premises to onlusions;

◮
Forward reasoning is the proess of moving from premises to

onlusions;

◮
Example: from a proof of a and a proof of b one an prove a ∧ b;

◮
Bakward reasoning is the proess of moving from onlusions to

premises;

◮
Example: to prove a ∧ b one has to prove a and also prove b;

◮
Coq uses bakward reasoning;

◮
They are implemented by �tatis�;

◮
A tati redues a goal to its subgoals, if any.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 20 / 59

Formalization Projets

Introdution

◮
Great and inreasing interest in formal proof and program

development over the reent years;

◮
Main areas inlude:

◮
Programming language semantis formalization;

◮
Mathematis formalization;

◮
Eduation.

◮
Important projets in both aademy and industry;

◮
Top 100 theorems (88% formalized);

◮
The trend is learly set.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 21 / 59

Formalization Projets

Four Color Theorem

◮
Stated in 1852, proved in 1976 and again in 1995;

◮
The two proofs used omputers to a some extent, but were not fully

mehanized;

◮
In 2005, Georges Gonthier (Mirosoft Researh) and Benjamin Werner

(INRIA) produed a proof sript that was fully heked by a mahine;

◮
Milestone in the history of omputer assisted proo�ng;

◮
60,000 lines of Coq sript and 2,500 lemmas;

◮
Byproduts.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 22 / 59

Formalization Projets

Four Color Theorem

�Although this work is purportedly about using omputer

programming to help doing mathematis, we expet that most of

its fallout will be in the reverse diretion using mathematis to

help programming omputers.�

Georges Gonthier

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 23 / 59

Formalization Projets

Odd Order Theorem

◮
Also known as the Feit-Thomson Theorem;

◮
Important to mathematis (in the lassi�ation of �nite groups) and

ryptography;

◮
Conjetured in 1911, proved in 1963;

◮
Formally proved by a team led by Georges Gonthier in 2012;

◮
Six years with full-time dediation;

◮
Huge ahievement in the history of omputer assisted proo�ng;

◮
150,000 lines of Coq sript and 13,000 theorems;

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 24 / 59

Formalization Projets

Compiler Certi�ation

◮
CompCert, a fully veri�ed ompiler for a large subset of C that

generates PowerPC ode;

◮
Objet ode is erti�ed to omply with the soure ode in all ases;

◮
Appliations in avionis and ritial software systems;

◮
Not only heked, but also developed in Coq;

◮
Three persons-years over a �ve yers period;

◮
42,000 lines of Coq ode.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 25 / 59

Formalization Projets

Mirokernel Certi�ation

◮
Critial omponent of operating systems, runs in privileged mode;

◮
Harder to test in all situations;

◮
seL4, written in C (10,000 lines), was fully heked in HOL/Isabelle;

◮
No rash, no exeution of any unsafe operation in any situation;

◮
Proof is 200,000 lines long;

◮
11 persons-years, an go down to 8, 100% overhead over a

non-erti�ed projet.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 26 / 59

Formalization Projets

Digital Seurity Certi�ation

◮
JavaCard smart ard platform;

◮
Personal data suh as banking, redit ard, health et;

◮
Multiple appliations by di�erent ompanies;

◮
Con�dene and integrity must be assured;

◮
Formalization of the behaviour and the properties of its omponents;

◮
Complete erti�ation, highest level ahieved;

◮
INRIA, Shlumberger and Gemalto.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 27 / 59

Current work

Sope

Context-free language theory:

◮
Relevant to omputer language de�nition and proessing;

◮
Context-free languages are represented by ontext-free grammars;

◮
Fous on results diretly related to ontext-free grammars;

◮
Stak-automata will be onsidered in the future.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 28 / 59

Current work

Motivation

◮
The large amount of formalization already existing for regular

language theory;

◮
The apparent absene of a similar formalization e�ort for ontext-free

language theory, at least in the Coq proof assistant and

◮
The high interest in ontext-free language theory formalization as a

onsequene of its pratial importane in omputer tehnology (e.g.

orretness of language proessing software).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 29 / 59

Current work

Objetives

Prove theorems about ontext-free language theory:

1

Closure properties (union, onatenation and Kleene star);

2

Simpli�ation of ontext-free grammars;

3

Normal forms for ontext-free grammars;

4

Pumping lemma for ontext-free languages.

Using Coq proof assistant + CoqIDE.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 30 / 59

Current work

This presentation

Closure of ontext-free languages under union, onatenation and Kleene

star:

1

Representation of ontext-free grammars and string derivations;

2

Representation of losure grammars;

3

Chek that ontext-free languages are losed under the operations;

4

Proof that the proposed losure grammars generate the desired

languages:

◮
All inputs produe orret outputs (diret operation);

◮
All outputs are orret results from some inputs (inverse operation).

5

A pair of theorems for eah operation (total of six).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 31 / 59

Current work

Grammar

G = (V,Σ, P, S), where:

◮ Σ is the set of terminal symbols;

◮ N = V − Σ is the set of non-terminal symbols;

◮ P is the set of rules α → β, with α ∈ N and β ∈ V ∗
;

◮ S ∈ N is the start symbol.

Reord fg: Type:= {

non_terminal: Type;

terminal: Type;

start_symbol: non_terminal;

sf:= list (non_terminal + terminal);

rules: non_terminal -> sf -> Prop }.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 32 / 59

Current work

Example

◮ G = ({S,X, Y, a, b, c}, {a, b, c}, {S → aS, S → b}, S)

Indutive nt1: Type:= S | X | Y.

Indutive t1: Type:= a | b | .

Indutive rs1: nt1 -> list (nt1+t1) -> Prop:=

r11: rs1 S [inr a;inl S℄

| r12: rs1 S [inr b℄.

Definition g1:= {|

non_terminal:= nt1;

terminal:= t1;

start_symbol:= S;

rules:= rs1 |}.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 33 / 59

Current work

Derivation

◮ s ⇒∗ s

◮ s1 ⇒
∗ s2 l s3 and l → r implies s1 ⇒

∗ s2 r s3

Indutive derives (g: fg): sf g -> sf g -> Prop :=

| derives_refl: forall s: sf g,

derives g s s

| derives_step: forall s1 s2 s3: sf g,

forall left: non_terminal g,

forall right: sf g,

derives g s1 (s2 ++ inl left :: s3)->

rules g left right ->

derives g s1 (s2 ++ right ++ s3).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 34 / 59

Current work

Sentene generation

◮ S ⇒∗ s

Definition generates (g: fg) (s: sf g): Prop:=

derives g [inl (start_symbol g)℄ s.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 35 / 59

Current work

Example

Lemma gen_g1_aab: generates g1 ([inr a℄++[inr a℄++[inr b℄).

Proof.

unfold generates.

rewrite <- app_nil_l. rewrite <- app_nil_r.

repeat rewrite <- app_asso.

rewrite <- (app_nil_l [inl (start_symbol g1)℄).

rewrite <- (app_nil_r [inl (start_symbol g1)℄).

apply derives_step with (left:=S)(s2:=[℄++[inr a℄++[inr a℄).

rewrite <- app_nil_r.

repeat rewrite <- app_asso.

apply derives_step with (left:=S)(right:=[inr a℄++[inl S℄).

rewrite app_nil_l. rewrite app_nil_r.

apply derives_diret.

apply r11. apply r11. apply r12.

Qed.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 36 / 59

Current work

Union

Semantis

Let L1, L2 be ontext-free languages.

◮ ∀w1 ∈ L1, w1 ∈ L1 ∪ L2;

◮ ∀w2 ∈ L2, w2 ∈ L1 ∪ L2;

◮ L1 ∪ L2 ontains no other strings;

◮ L1 ∪ L2 is ontext-free.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 37 / 59

Current work

Union

General

◮ G1 = (V1,Σ1, P1, S1)

◮ G2 = (V2,Σ2, P2, S2)

◮ G3 = (V1 ∪ V2 ∪ {S3},Σ1 ∪ Σ2, P1 ∪ P2 ∪ {S3 → S1, S3 → S2}, S3)

Definition g_uni (g1 g2: fg): fg := {|

non_terminal:= g_uni_nt g1 g2;

terminal:= g_uni_t g1 g2;

start_symbol:= Start_uni g1 g2;

rules:= g_uni_rules g1 g2 |}.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 38 / 59

Current work

Union

Terminals

◮ Σ3 = Σ1 ∪ Σ2

Definition g_uni_t (g1 g2: fg): Type:=

(terminal g1 + terminal g2).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 39 / 59

Current work

Union

Non-terminals

◮ V3 = V1 ∪ V2 ∪ {S3}

Indutive g_uni_nt (g1 g2: fg): Type :=

| Start_uni : g_uni_nt g1 g2

| Transf1_uni : non_terminal g1 -> g_uni_nt g1 g2

| Transf2_uni : non_terminal g2 -> g_uni_nt g1 g2.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 40 / 59

Current work

Union

Maps

◮
Every symbol (string) of G1 is a symbol (string) of G3.

Definition g_uni_sf_lift_left (g1 g2: fg)

(: non_terminal g1 + terminal g1):

g_uni_nt g1 g2 + g_uni_t g1 g2:=

math with

| inl nt => inl (Transf1_uni g1 g2 nt)

| inr t => inr (inl t)

end.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 41 / 59

Current work

Union

Maps

◮
Every symbol (string) of G2 is a symbol (string) of G3.

Definition g_uni_sf_lift_right (g1 g2: fg)

(: non_terminal g2 + terminal g2):

g_uni_nt g1 g2 + g_uni_t g1 g2:=

math with

| inl nt => inl (Transf2_uni g1 g2 nt)

| inr t => inr (inr t)

end.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 42 / 59

Current work

Union

Rules

◮
Every rule of G1 is a rule of G3

◮
Every rule of G2 is a rule of G3

◮ S3 → S1 is a rule of G3

◮ S3 → S2 is a rule of G3

N1 ∩N2 = ∅.
S3 /∈ N1 ∪N2.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 43 / 59

Current work

Union

Rules

Indutive g_uni_rules (g1 g2: fg): g_uni_nt g1 g2 ->

list (g_uni_nt g1 g2 + g_uni_t g1 g2) -> Prop :=

| Start1_uni: g_uni_rules g1 g2 (Start_uni g1 g2)

[inl (Transf1_uni g1 g2 (start_symbol g1))℄

| Start2_uni: g_uni_rules g1 g2 (Start_uni g1 g2)

[inl (Transf2_uni g1 g2 (start_symbol g2))℄

| Lift1_uni: forall nt s,

rules g1 nt s ->

g_uni_rules g1 g2 (Transf1_uni g1 g2 nt)

(map (g_uni_sf_lift_left g1 g2) s)

| Lift2_uni: forall nt s,

rules g2 nt s ->

g_uni_rules g1 g2 (Transf2_uni g1 g2 nt)

(map (g_uni_sf_lift_right g1 g2) s).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 44 / 59

Current work

Union

Diret operation

◮ w1 ∈ L(G1) implies w1 ∈ L(G3) and

◮ w2 ∈ L(G2) implies w2 ∈ L(G3)

Theorem g_uni_orret (g1 g2: fg)(s1: sf g1)(s2: sf g2):

(generates g1 s1 -> generates (g_uni g1 g2)

(map (g_uni_sf_lift1 g1 g2) s1))

/\

(generates g2 s2 -> generates (g_uni g1 g2)

(map (g_uni_sf_lift2 g1 g2) s2)).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 45 / 59

Current work

Union

Inverse operation

w ∈ L(G3) implies:

◮ w ∈ L(G1) or

◮ w ∈ L(G2)

Theorem g_uni_orret_inv (g1 g2: fg)(s: sf (g_uni g1 g2)):

generates (g_uni g1 g2) s ->

(s=[inl (start_symbol (g_uni g1 g2))℄)

\/

(exists s1: sf g1,

(s=(map (g_uni_sf_lift_left g1 g2) s1) /\ generates g1 s1))

\/

(exists s2: sf g2,

(s=(map (g_uni_sf_lift_right g1 g2) s2) /\ generates g2 s2)).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 46 / 59

Current work

Conatenation

Semantis

Let L1, L2 be ontext-free languages.

◮ ∀w1 ∈ L1,∀w2 ∈ L2, w1w2 ∈ L1L2;

◮ L1L2 ontains no other strings;

◮ L1L2 is ontext-free.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 47 / 59

Current work

Conatenation

General

◮ G1 = (V1,Σ1, P1, S1)

◮ G2 = (V2,Σ2, P2, S2)

◮ G3 = (V1 ∪ V2 ∪ {S3},Σ1 ∪ Σ2, P1 ∪ P2 ∪ {S3 → S1S2}, S3)

Definition g_at (g1 g2: fg): fg := {|

non_terminal:= g_at_nt g1 g2;

terminal:= g_at_t g1 g2;

start_symbol:= Start_at g1 g2;

rules:= g_at_rules g1 g2 |}.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 48 / 59

Current work

Conatenation

Diret operation

◮ w1 ∈ L(G1) and

◮ w2 ∈ L(G2)

implies w1w2 ∈ L(G3).

Theorem g_at_orret (g1 g2: fg)(s1: sf g1)(s2: sf g2):

generates g1 s1

/\

generates g2 s2 ->

generates (g_at g1 g2)

((map (g_at_sf_lift_left g1 g2) s1)++

(map (g_at_sf_lift_right g1 g2) s2)).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 49 / 59

Current work

Conatenation

Inverse operation

w ∈ L(G3) implies:

◮ w = w1w2 and

◮ w1 ∈ L(G1) and
◮ w2 ∈ L(G2).

Theorem g_at_orret_inv (g1 g2: fg)(s: sf (g_at g1 g2)):

generates (g_at g1 g2) s ->

exists s1: sf g1,

exists s2: sf g2,

s =(map (g_at_sf_lift_left g1 g2) s1)++

(map (g_at_sf_lift_right g1 g2) s2)

/\

generates g1 s1

/\

generates g2 s2.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 50 / 59

Current work

Kleene star

Semantis

Let L be a ontext-free language.

◮ ǫ ∈ L∗
;

◮ ∀s′ ∈ L∗,∀s ∈ L, s′s ∈ L∗
;

◮ L∗
ontains no other strings;

◮ L∗
is ontext-free.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 51 / 59

Current work

Kleene star

General

◮ G1 = (V1,Σ1, P1, S1)

◮ G3 = (V1 ∪ {S3},Σ1, P1 ∪ {S3 → S3S1, S3 → ǫ}, S3)

Definition g_lo (g: fg): fg := {|

non_terminal:= g_lo_nt g;

terminal:= g_lo_t g;

start_symbol:= Start_lo g;

rules:= g_lo_rules g |}.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 52 / 59

Current work

Kleene star

Diret operation

◮ ǫ ∈ L(G3);

◮ s′ ∈ L(G3) and s ∈ L(G1) implies s′s ∈ L(G3).

Theorem g_lo_orret (g: fg)(s: sf g)(s': sf (g_lo g)):

generates (g_lo g) nil

/\

(generates (g_lo g) s' /\ generates g s ->

generates (g_lo g) (s'++ (map (g_lo_sf_lift g)) s)).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 53 / 59

Current work

Kleene star

Inverse operation

w ∈ L(G3) implies:

◮ w = ǫ or

◮ w = s′s and s′ ∈ L(G3) and s ∈ L(G1).

Theorem g_lo_orret_inv (g: fg)(s: sf (g_lo g)):

generates (g_lo g) s ->

(s=[℄)

\/

(s=[inl (start_symbol (g_lo g))℄)

\/

(exists s': sf (g_lo g),

exists s�: sf g,

generates (g_lo g) s' / generates g s� /\

s=s'++map (g_lo_sf_lift g) s�).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 54 / 59

Current work

Development

◮
Approximately 1.400 lines of plain Coq sript;

◮
Indution on prediate derives;

◮
Diret hypothesis manipulation;

◮
Libraries Asii, String and List;

◮
Available for download at:

http://www.univasf.edu.br/~marus.ramos/oq/fg-losure.v

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 55 / 59

http://www.univasf.edu.br/~marcus.ramos/coq/cfg-closure.v

Current work

Simpli�ation

Partially ompleted

◮
Simpli�ation = symbol elimination + rule elimination;

◮
Symbol n:

◮
Useful: n ⇒∗ s, s ∈ Σ∗

;

◮
Reahable: S ⇒∗ αnβ.

◮
Every non-empty ontext-free language is generated by a ontext-free

grammar with only useful and reahable symbols;

◮
Approximately 4.000 lines of Coq sript;

◮
Dozens of additional lemmas on generi lists, ontext-free grammars

and ontext-free derivations were also proved;

◮
116 lemmas and theorems in total (losure + simpli�ation) so far;

◮
Now working on rule elimination:

◮
Empty rules;

◮
Unit rules.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 56 / 59

Conlusions

Appliations

◮
Aademy;

◮
Industry;

◮
Software and hardware erti�ation;

◮
Software and hardware development;

◮
Proof heking;

◮
Theoretial formalization;

◮
Mathematis database (e.g. QED projet).

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 57 / 59

Conlusions

Computers and mathematis

◮
Pratitioners base is still small;

◮
Learning urve grows slowly;

◮
Advantages of formalization are immense;

◮
Important industrial projets;

◮
Disadvantages are being gradually eliminated.

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 58 / 59

Conlusions

Computers and mathematis

◮
Not easy, but very rewarding;

◮
Hope you have enjoyed;

◮
Hope you want to go further;

◮
Ask me if you want referenes;

◮
Write me if you have questions or suggestions;

◮
Let me know you if plan to work in this area;

◮
Hope to bring more next time;

Thank you!

Marus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 59 / 59

	Introduction
	Proof Assistants
	Calculus of Constructions with Inductive Definitions
	Coq
	Formalization Projects
	Current work
	Conclusions

