LSFA 2014

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization ptember 09, 2014 1/59

Formalization of closure properties for

context-free grammars

Marcus Ramos (UFPE/UNIVASF)

Marcus Vinicius Midena Ramos

UFPE/UNIVASF

September 09, 2014

mvmr@cin.ufpe.br
marcus.ramos@univasf.edu.br

CFGs Formalization

September 09, 2014

Introduction

Profile

» Electronics Engineering at Universidade de Sdo Paulo in 1982;
» Master in Digital Systems at Universidade de Sdo Paulo in 1991;

» Teaching experience with programming languages, compilers, formal
languages, automata theory and computation theory since 1991;

» Current position at Universidade Federal do Vale do S3o Francisco
(Petrolina-PE/Juazeiro-BA) since 2008;

» PhD in Computer Science student at Universidade Federal de
Pernambuco since 2011.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 3 /59

Introduction

Background

» Experience in teaching language and automata theory;

» Book “Linguagens Formais” published in 2009 (with J.J. Neto and I.S.
Vega);

» Algorithms were used instead of demonstrations for most theorems;

> Interest in formalization after studying logic, lambda calculus, type
theory and Cogq;

» Desire to follow the lines of the book and formalize its contents;

» Related work over recent years, usually with a restricted focus.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 4 / 59

Introduction

Current work

v

Formal mathematics;

v

Interactive theorem proving;

v

Context-free language theory formalization;

Proof assistants.

v

» Coq.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 5 /59

Introduction

Summary

o
o
o
o
o
o
o

Introduction

Proof Assistants

Calculus of Constructions with Inductive Definitions

Coq

Formalization Projects

Current work

Conclusions

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Introduction

History and practice of theorem proving

>

Theorem proofs:

» Informal;
» Difficult to build;
» Difficult to check.

v

Formalization (“computer encoded mathematics”) is an alternative;

» Computer-aided reasoning;

v

Use of proof assistants, also known as interactive theorem provers.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 7 /59

Introduction

Formal mathematics

Natural
Deduction

Untyped
Lambda

Martin-
Lof

Calculus of
Constructions

Curry-
Howard

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Proof Assistants

Characteristics

» Software tools that assist the user in theorem proving and program
development;

» First initiative dates from 1967 (Automath, De Bruijn);

» Many provers are available today (Coq, Agda, Mizar, HOL, Isabelle,
Matita, Nuprl...);

> Interactive;
» Graphical interface;
» Proof/program checking;

» Proof/program construction.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 9 /59

Proof Assistants

© The user writes a theorem (proposition) in first-order logic or a type
expression (specification);
© The constructs directly or indirectly:
» A proof of the theorem;
» A program (term) that complies to the specification.
© Directly: the proof/term is written in the formal language accepted by
the assistant;

Q Indirectly: the proof/term is built with the assistance of an interactive
“tactics” language:

© In either case, the assistant checks that the proof/term complies to
the theorem/specification.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 10 / 59

Proof Assistants

Check and/or construct

» Proof assistants check that proofs/terms are correctly constructed;
» This is done via simple type-checking algorithms;

» Automated proof/term construction might exist is some cases, to
some extent, but is not the main focus;

» Thus the name “proof assistant”;

» Automated theorem proofing might be pursued, due to “proof
irrelevance”;

» Automated program development, on the other hand, is unrealistic.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 11 / 59

Proof Assistants

Main benefits

» Proofs and programs can be mechanically checked, saving time and
effort and increasing reliability;

» Checking is efficient;
» Results can be easily stored and retrieved for use in different contexts;
» Tactics help the user to construct proofs/programs;

» User gets deeper insight into the nature of his proofs/programs,
allowing further improvement.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 12 / 59

Proof Assistants

Applications

v

Formalization and verification of theorems and whole theories;

v

Verification of computer programs;

v

Correct software development;

v

Automatic review of large and complex proofs submitted to journals;

Verification of hardware and software components.

v

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 13 / 59

Proof Assistants

Drawbacks

» Failures in infrastructure may decrease confidence in the results (proof
assistant code, language processors, operating system, hardware etc);

» Size of formal proofs;
» Reduced numer of people using proof assistants;
» Slowly increasing learning curve;

» Resemblance of computer code keeps pure mathematicians
uninterested.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 14 / 59

Calculus of Constructions with Inductive Definitions

General

A richly typed lambda calculus extended with inductive definitions.

Calculus of Constructions developed by Thierry Coquand;

v

v

Constructive type theory;

Later extended with inductive definitions;

v

Used as the mathematical language of the Coq proof assistant

v

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Calculus of Constructions with Inductive Definitions

Calculus of Constructions

» All logical operators (—, A, V,— and 3) are defined in terms of the
universal quantifier (V), using “dependent types”;

» Types and programs (terms) have the same syntactical structure;
» Types have a type themselves (called “Sort”);

» Base sorts are “Prop” (the type of propositions) and “Set” (the type
of small sets);

» Prop: Type(1l), Set : Type(1), Type(i) : Type(i +1),i > 1;
» S = {Prop, Set,Type(i)|i > 1} is the set of sorts;
» Various datatypes can be defined (naturals, booleans etc);

» Set of typing and conversion rules.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Calculus of Constructions with Inductive Definitions

Inductive Definitions

Finite definition of infinite sets.
» “Constructors” define the elements of a set;
» Constructors can be base elements of the set;

» Constructors can be a functions that takes set elements and return
new set elements.

» Manipulation is done via “pattern matching” over the inductive
definitions.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 17 / 59

Overview

» Developed by Huet/Coquand at INRIA in 1984;
» First version released in 1989, inductive types were added in 1991;
» Continuous development and increasing usage since then;

» The underlying logic is the Calculus of Constructions with Inductive
Definitions;

» It is implemented by a typed functional programming with a higher
order logic language called Gallina;

> Interaction with the user is via a command language called Vernacular,

» Constructive logic with large standard library and user contributions
base;

» Extensible environment;

» All resources freely available from http://coq.inria.fr/.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 18 / 59

http://coq.inria.fr/

User session

The proof can be constructed directly ou indirectly.
In the indirect case,

>

>

v

v

v

v

The initial goal is the theorem/specification supplied by the user;
The environment and the context are initially empty;

The application of a “tactics” substitutes the current goal for zero ou
more subgoals;

The context changes and might incorporate new hypotheses;
The process is repeated for each subgoal, until no one subgoal remains;

The proof/term is constructed from the sequence of tactics used.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 19 / 59

Tactics usage

Inference rules map premises to conclusions;

» Forward reasoning is the process of moving from premises to
conclusions;
» Example: from a proof of a and a proof of b one can prove a A b;
» Backward reasoning is the process of moving from conclusions to
premises;
» Example: to prove a A b one has to prove a and also prove b;

» Coq uses backward reasoning;

» They are implemented by “tactics”;

v

A tactic reduces a goal to its subgoals, if any.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 20 / 59

Formalization Projects

Introduction

v

Great and increasing interest in formal proof and program
development over the recent years;
» Main areas include:

» Programming language semantics formalization;
» Mathematics formalization;
» Education.

v

Important projects in both academy and industry;
Top 100 theorems (88% formalized);

The trend is clearly set.

v

v

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 21 / 59

Formalization Projects

Four Color Theorem

» Stated in 1852, proved in 1976 and again in 1995;

» The two proofs used computers to a some extent, but were not fully
mechanized;

» In 2005, Georges Gonthier (Microsoft Research) and Benjamin Werner
(INRIA) produced a proof script that was fully checked by a machine;

» Milestone in the history of computer assisted proofing;
» 60,000 lines of Coq script and 2,500 lemmas;
» Byproducts.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 22 /59

Formalization Projects

Four Color Theorem

“Although this work is purportedly about using computer
programming to help doing mathematics, we expect that most of
its fallout will be in the reverse direction using mathematics to
help programming computers.”

Georges Gonthier

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 23 /59

Formalization Projects

Odd Order Theorem

» Also known as the Feit-Thomson Theorem;

» Important to mathematics (in the classification of finite groups) and
cryptography;

» Conjectured in 1911, proved in 1963;

» Formally proved by a team led by Georges Gonthier in 2012;

» Six years with full-time dedication;

» Huge achievement in the history of computer assisted proofing;

» 150,000 lines of Coq script and 13,000 theorems;

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 24 / 59

Formalization Projects

Compiler Certification

» CompCert, a fully verified compiler for a large subset of C that
generates PowerPC code;

» Object code is certified to comply with the source code in all cases;
» Applications in avionics and critical software systems;

» Not only checked, but also developed in Cogq;

» Three persons-years over a five yers period;

» 42,000 lines of Coq code.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Formalization Projects

Microkernel Certification

» Critical component of operating systems, runs in privileged mode;

» Harder to test in all situations;

» selL4, written in C (10,000 lines), was fully checked in HOL/Isabelle;
» No crash, no execution of any unsafe operation in any situation;

» Proof is 200,000 lines long;

» 11 persons-years, can go down to 8, 100% overhead over a
non-certified project.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 26 / 59

Formalization Projects

Digital Security Certification

» JavaCard smart card platform;

» Personal data such as banking, credit card, health etc;

» Multiple applications by different companies;

» Confidence and integrity must be assured;

» Formalization of the behaviour and the properties of its components;
» Complete certification, highest level achieved;

» INRIA, Schlumberger and Gemalto.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 27 / 59

Current work

Context-free language theory:
» Relevant to computer language definition and processing;
» Context-free languages are represented by context-free grammars;
» Focus on results directly related to context-free grammars;

» Stack-automata will be considered in the future.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Current work

Motivation

» The large amount of formalization already existing for regular
language theory;

» The apparent absence of a similar formalization effort for context-free
language theory, at least in the Coq proof assistant and

» The high interest in context-free language theory formalization as a

consequence of its practical importance in computer technology (e.g.
correctness of language processing software).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 29 / 59

Current work

Objectives

Prove theorems about context-free language theory:
© Closure properties (union, concatenation and Kleene star);
© Simplification of context-free grammars;
© Normal forms for context-free grammars;
@ Pumping lemma for context-free languages.

Using Coq proof assistant + CoqlDE.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Current work

This presentation

Closure of context-free languages under union, concatenation and Kleene
star:

© Representation of context-free grammars and string derivations;
© Representation of closure grammars;

© Check that context-free languages are closed under the operations;

@ Proof that the proposed closure grammars generate the desired
languages:
> All inputs produce correct outputs (direct operation);
» All outputs are correct results from some inputs (inverse operation).

© A pair of theorems for each operation (total of six).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 31 /59

Current work

Grammar

G = (V,%,P,S), where:
» Y is the set of terminal symbols;
» N =V — X is the set of non-terminal symbols;
» P is the set of rules @« — 3, with « € N and 8 € V'*;
» S € N is the start symbol.

Record cfg: Type:= {

non_terminal: Type;

terminal: Type;

start_symbol: non_terminal;

sf:= list (non_terminal + terminal);
rules: non_terminal -> sf -> Prop }.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 32 /59

Current work

Example

» G=({S,X,Y,a,b,c},{a,b,c},{S — aS,S — b},9)

Inductive ntl: Type:= S | X | Y.

Inductive ti1: Type:=a | b | c.

Inductive rsl: ntl -> list (ntl+tl) -> Prop:=
ri1: rs1 S [inr a;inl S]

| r12: rs1 S [inr b].

Definition gl:= {|

non_terminal:= ntl;

terminal:= ti;

start_symbol:= S;

rules:= rsl |}.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 33 /59

Current work

Derivation

> s =>*3

> s1 =" s9ls3and [— 7 implies s1 = sor s3

Inductive derives (g: cfg): sf g -> sf g -> Prop :=
| derives_refl: forall s: sf g,
derives g s s
| derives_step: forall sl s2 s3: sf g,
forall left: non_terminal g,
forall right: sf g,
derives g sl (s2 ++ inl left :: s3)->
rules g left right ->
derives g sl (s2 ++ right ++ s3).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 34 / 59

Current work

Sentence generation

> S=*s

Definition generates (g: cfg) (s: sf g): Prop:=
derives g [inl (start_symbol g)] s.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 35 / 59

Current work

Example

Lemma gen_gl_aab: generates gl ([inr al++[inr al++[inr bl).
Proof.

unfold generates.

rewrite <- app_nil_l. rewrite <- app_nil_r.

repeat rewrite <- app_assoc.

rewrite <- (app_nil_1l [inl (start_symbol gi)]).

rewrite <- (app_nil_r [inl (start_symbol gi)]).

apply derives_step with (left:=S)(s2:=[]++[inr al++[inr a]).
rewrite <- app_nil_r.

repeat rewrite <- app_assoc.

apply derives_step with (left:=S) (right:=[inr a]++[inl S]).
rewrite app_nil_1l. rewrite app_nil_r.

apply derives_direct.

apply ril. apply ril. apply ri2.

Qed.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 36 / 59

Current work

Union

Semantics

Let L1, Lo be context-free languages.
> Yw, € Ly, wy € L1 U Lo;
> Ywse € Lo, wy € L1 U Lo;
» [U Ly contains no other strings;

» L1 U Ly is context-free.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Current work

Union

General

» G = (W, %1, P, 51)
> Gy = (Vo, %2, P, S7)
» G3 = (V1 Uy {Sg},zl UXs, PAUPU {Sg — 51,53 — SQ},Sg)

Definition g_uni (gl g2: cfg): cfg := {l|
non_terminal:= g_uni_nt gl g2;
terminal:= g_uni_t gl g2;
start_symbol:= Start_uni gl g2;

rules:= g_uni_rules gl g2 |}.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Current work

Union

Terminals

> Yz =X U

Definition g_uni_t (gl g2: cfg): Type:=
(terminal gl + terminal g2).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 39 / 59

Current work

Union

Non-terminals

» Vs =1V1UVhU{S3}

Inductive g_uni_nt (gl g2: cfg): Type :=

| Start_uni : g_uni_nt gl g2

| Transfl_uni : non_terminal gl -> g_uni_nt gl g2
| Transf2_uni : non_terminal g2 -> g_uni_nt gl g2.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization

September 09, 2014

Current work

» Every symbol (string) of G is a symbol (string) of G3.

Definition g_uni_sf_lift_left (gl g2: cfg)
(c: non_terminal gl + terminal gl):
g_uni_nt gl g2 + g_uni_t gl g2:=

match ¢ with

| inl nt => inl (Transfl_uni gl g2 nt)

| inr t => inr (inl t)
end.

Marcus Ramos (UFPE/UNIVASF)

CFGs Formalization

September 09, 2014

Current work

» Every symbol (string) of G is a symbol (string) of Gs.

Definition g_uni_sf_lift_right (gl g2: cfg)
(c: non_terminal g2 + terminal g2):
g_uni_nt gl g2 + g_uni_t gl g2:=

match ¢ with

| inl nt => inl (Transf2_uni gl g2 nt)

| inr t => inr (inr t)
end.

Marcus Ramos (UFPE/UNIVASF)

CFGs Formalization

September 09, 2014

Current work

v

Every rule of G is a rule of G

v

Every rule of G5 is a rule of G

v

S3 — Sy is a rule of G3

v

S3 — Ss is a rule of G

NlﬁNQZ(b.
53¢N1UN2.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization

September 09, 2014

Current work

Inductive g_uni_rules (gl g2: cfg): g_uni_nt gl g2 ->
list (g_uni_nt gl g2 + g_uni_t gl g2) -> Prop :=
| Startl_uni: g_uni_rules gl g2 (Start_uni gl g2)
[inl (Transfl_uni gl g2 (start_symbol gl))]
| Start2_uni: g_uni_rules gl g2 (Start_uni gl g2)
[inl (Transf2_uni gl g2 (start_symbol g2))]
| Liftl1_uni: forall nt s,
rules gl nt s ->
g_uni_rules gl g2 (Transfi_uni gl g2 nt)
(map (g_uni_sf_lift_left gl g2) s)
| Lift2_uni: forall nt s,
rules g2 nt s ->
g_uni_rules gl g2 (Transf2_uni gl g2 nt)
(map (g_uni_sf_lift_right gl g2) s).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 44 / 59

Current work

Union

Direct operation

» wy € L(Gy) implies w; € L(G3) and
> wo € L(Gg) implies wo € L(Gg)

Theorem g_uni_correct (gl g2: cfg)(sl: sf gl)(s2: sf g2):
(generates gl sl -> generates (g_uni gl g2)

(map (g_uni_sf_liftl gl g2) s1))
/\

(generates g2 s2 -> generates (g_uni gl g2)
(map (g_uni_sf_lift2 gl g2) s2)).

Marcus Ramos (UFPE/UNIVASF)

CFGs Formalization

September 09, 2014 45 / 59

Current work

Union

Inverse operation

w € L(G3) implies:
» w e L(Gy) or
> w e L(GQ)

Theorem g_uni_correct_inv (gl g2: cfg)(s: sf (g_uni gl g2)):
generates (g_uni gl g2) s ->

(s=[inl (start_symbol (g_uni gl g2))1)

\/

(exists sl: sf gi,

(s=(map (g_uni_sf_lift_left gl g2) sl) /\ generates gl s1))
\/

(exists s2: sf g2,

(s=(map (g_uni_sf_lift_right gl g2) s2) /\ generates g2 s2)).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 46 / 59

Current work

Concatenation

Semantics

Let L1, Lo be context-free languages.
> Ywy € Ll,VWQ S LQ,'U)lQUQ € Ly1Lo;
» [1Ly contains no other strings;

» Lq1L5 is context-free.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Current work

Concatenation

General

» G = (W, %1, P, 51)
> Gy = (Vo, %2, P, S7)
» G3 = (V1 Uy {Sg},zl UXs, PAUPU {Sg — 5152},53)

Definition g_cat (gl g2: cfg): cfg := {l|
non_terminal:= g_cat_nt gl g2;
terminal:= g_cat_t gl g2;
start_symbol:= Start_cat gl g2;

rules:= g_cat_rules gl g2 |}.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Current work

Concatenation

Direct operation

> wi € L(Gl) and
> wy € L(Gg)

implies wywy € L(G3).

Theorem g_cat_correct (gl g2: cfg)(sl: sf gl)(s2: sf g2):
generates gl sl
/\
generates g2 s2 ->
generates (g_cat gl g2)
((map (g_cat_sf_lift_left gl g2) sl)++
(map (g_cat_sf_lift_right gl g2) s2)).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 49 / 59

Current work

Concatenation

Inverse operation

w € L(G3) implies:
> w = wiws and
> wi € L(Gl) and
> wo € L(GQ).

Theorem g_cat_correct_inv (gl g2: cfg)(s: sf (g_cat gl g2)):
generates (g_cat gl g2) s ->
exists sl: sf gi,
exists s2: sf g2,
s =(map (g_cat_sf_lift_left gl g2) sl)++
(map (g_cat_sf_lift_right gl g2) s2)
/\
generates gl sl
/\

generates g2 s2.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 50 / 59

Current work

Kleene star

Semantics

Let L be a context-free language.
> ec L¥
» Vs’ € L*,Vs € L,s's € L*;
» L* contains no other strings;

» L* is context-free.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Current work

Kleene star

General

> Gl — (‘/l)zlaplasl)
» G3 = (V1 U {Sg},El,Pl @] {53 — 5351,53 — 6},53)

Definition g_clo (g: cfg): cfg := {l|
non_terminal:= g_clo_nt g;
terminal:= g_clo_t g;
start_symbol:= Start_clo g;

rules:= g_clo_rules g |}.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Current work

Kleene star

Direct operation

» e € L(Gs);
» s’ € L(G3) and s € L(G1) implies s's € L(G3).

Theorem g_clo_correct (g: cfg)(s: sf g)(s’: sf (g_clo g)):
generates (g_clo g) nil

/\

(generates (g_clo g) s’ /\ generates g s ->

generates (g_clo g) (s’++ (map (g_clo_sf_lift g)) s)).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 53 / 59

Current work

Kleene star

Inverse operation

w € L(G3) implies:
> w=¢€or

» w=2s'sand & € L(G3) and s € L(Gy).

Theorem g_clo_correct_inv (g: cfg) (s: sf (g_clo g)):
generates (g_clo g) s ->

(s=[1)

\/

(s=[inl (start_symbol (g_clo g))])

\/

(exists s’: sf (g_clo g),

exists s’’: sf g,

generates (g_clo g) s’ / generates g s” /\
s=s’++map (g_clo_sf_lift g) s’”).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization

September 09, 2014

Current work

Development

» Approximately 1.400 lines of plain Coq script;

v

Induction on predicate derives;

v

Direct hypothesis manipulation;

v

Libraries Ascii, String and List;

Available for download at:
http://www.univasf.edu.br/ " marcus.ramos/coq/cfg-closure.v

v

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 55 / 59

http://www.univasf.edu.br/~marcus.ramos/coq/cfg-closure.v

Current work

Simplification
Partially completed

» Simplification = symbol elimination + rule elimination;

v

Symbol n:
» Useful: n =* 5,5 € ¥*;
» Reachable: S =* anp.

» Every non-empty context-free language is generated by a context-free
grammar with only useful and reachable symbols;

» Approximately 4.000 lines of Coq script;

» Dozens of additional lemmas on generic lists, context-free grammars
and context-free derivations were also proved;

» 116 lemmas and theorems in total (closure + simplification) so far;

» Now working on rule elimination:

» Empty rules;
» Unit rules.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 56 / 59

Conclusions

Applications

v

Academy;

v

Industry;

v

Software and hardware certification;

v

Software and hardware development;

v

Proof checking;

v

Theoretical formalization;

v

Mathematics database (e.g. QED project).

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Conclusions

Computers and mathematics

v

Practitioners base is still small;

v

Learning curve grows slowly;

v

Advantages of formalization are immense;

v

Important industrial projects;

v

Disadvantages are being gradually eliminated.

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

Conclusions

Computers and mathematics

» Not easy, but very rewarding;

» Hope you have enjoyed,;

» Hope you want to go further;

» Ask me if you want references;

» Write me if you have questions or suggestions;
» Let me know you if plan to work in this area;

» Hope to bring more next time;

Thank youl

Marcus Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014

	Introduction
	Proof Assistants
	Calculus of Constructions with Inductive Definitions
	Coq
	Formalization Projects
	Current work
	Conclusions

