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Introdu
tion

Pro�le

◮
Ele
troni
s Engineering at Universidade de São Paulo in 1982;

◮
Master in Digital Systems at Universidade de São Paulo in 1991;

◮
Tea
hing experien
e with programming languages, 
ompilers, formal

languages, automata theory and 
omputation theory sin
e 1991;

◮
Current position at Universidade Federal do Vale do São Fran
is
o

(Petrolina-PE/Juazeiro-BA) sin
e 2008;

◮
PhD in Computer S
ien
e student at Universidade Federal de

Pernambu
o sin
e 2011.
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Introdu
tion

Ba
kground

◮
Experien
e in tea
hing language and automata theory;

◮
Book �Linguagens Formais� published in 2009 (with J.J. Neto and I.S.

Vega);

◮
Algorithms were used instead of demonstrations for most theorems;

◮
Interest in formalization after studying logi
, lambda 
al
ulus, type

theory and Coq;

◮
Desire to follow the lines of the book and formalize its 
ontents;

◮
Related work over re
ent years, usually with a restri
ted fo
us.
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Introdu
tion

Current work

◮
Formal mathemati
s;

◮
Intera
tive theorem proving;

◮
Context-free language theory formalization;

◮
Proof assistants.

◮
Coq.
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Introdu
tion

History and pra
ti
e of theorem proving

◮
Theorem proofs:

◮
Informal;

◮
Di�
ult to build;

◮
Di�
ult to 
he
k.

◮
Formalization (�
omputer en
oded mathemati
s�) is an alternative;

◮
Computer-aided reasoning;

◮
Use of proof assistants, also known as intera
tive theorem provers.

Mar
us Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 7 / 59



Introdu
tion

Formal mathemati
s
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Proof Assistants

Chara
teristi
s

◮
Software tools that assist the user in theorem proving and program

development;

◮
First initiative dates from 1967 (Automath, De Bruijn);

◮
Many provers are available today (Coq, Agda, Mizar, HOL, Isabelle,

Matita, Nuprl...);

◮
Intera
tive;

◮
Graphi
al interfa
e;

◮
Proof/program 
he
king;

◮
Proof/program 
onstru
tion.
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Proof Assistants

Usage

1

The user writes a theorem (proposition) in �rst-order logi
 or a type

expression (spe
i�
ation);

2

The 
onstru
ts dire
tly or indire
tly:

◮
A proof of the theorem;

◮
A program (term) that 
omplies to the spe
i�
ation.

3

Dire
tly: the proof/term is written in the formal language a

epted by

the assistant;

4

Indire
tly: the proof/term is built with the assistan
e of an intera
tive

�ta
ti
s� language:

5

In either 
ase, the assistant 
he
ks that the proof/term 
omplies to

the theorem/spe
i�
ation.
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Proof Assistants

Che
k and/or 
onstru
t

◮
Proof assistants 
he
k that proofs/terms are 
orre
tly 
onstru
ted;

◮
This is done via simple type-
he
king algorithms;

◮
Automated proof/term 
onstru
tion might exist is some 
ases, to

some extent, but is not the main fo
us;

◮
Thus the name �proof assistant�;

◮
Automated theorem proo�ng might be pursued, due to �proof

irrelevan
e�;

◮
Automated program development, on the other hand, is unrealisti
.
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Proof Assistants

Main bene�ts

◮
Proofs and programs 
an be me
hani
ally 
he
ked, saving time and

e�ort and in
reasing reliability;

◮
Che
king is e�
ient;

◮
Results 
an be easily stored and retrieved for use in di�erent 
ontexts;

◮
Ta
ti
s help the user to 
onstru
t proofs/programs;

◮
User gets deeper insight into the nature of his proofs/programs,

allowing further improvement.
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Proof Assistants

Appli
ations

◮
Formalization and veri�
ation of theorems and whole theories;

◮
Veri�
ation of 
omputer programs;

◮
Corre
t software development;

◮
Automati
 review of large and 
omplex proofs submitted to journals;

◮
Veri�
ation of hardware and software 
omponents.
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Proof Assistants

Drawba
ks

◮
Failures in infrastru
ture may de
rease 
on�den
e in the results (proof

assistant 
ode, language pro
essors, operating system, hardware et
);

◮
Size of formal proofs;

◮
Redu
ed numer of people using proof assistants;

◮
Slowly in
reasing learning 
urve;

◮
Resemblan
e of 
omputer 
ode keeps pure mathemati
ians

uninterested.
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Cal
ulus of Constru
tions with Indu
tive De�nitions

General

A ri
hly typed lambda 
al
ulus extended with indu
tive de�nitions.

◮
Cal
ulus of Constru
tions developed by Thierry Coquand;

◮
Constru
tive type theory;

◮
Later extended with indu
tive de�nitions;

◮
Used as the mathemati
al language of the Coq proof assistant
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Cal
ulus of Constru
tions with Indu
tive De�nitions

Cal
ulus of Constru
tions

◮
All logi
al operators (→,∧,∨,¬ and ∃) are de�ned in terms of the

universal quanti�er (∀), using �dependent types�;

◮
Types and programs (terms) have the same synta
ti
al stru
ture;

◮
Types have a type themselves (
alled �Sort�);

◮
Base sorts are �Prop� (the type of propositions) and �Set� (the type
of small sets);

◮ Prop : Type(1), Set : Type(1), Type(i) : Type(i+ 1), i ≥ 1;

◮ S = {Prop, Set, Type(i)|i ≥ 1} is the set of sorts;

◮
Various datatypes 
an be de�ned (naturals, booleans et
);

◮
Set of typing and 
onversion rules.
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Cal
ulus of Constru
tions with Indu
tive De�nitions

Indu
tive De�nitions

Finite de�nition of in�nite sets.

◮
�Constru
tors� de�ne the elements of a set;

◮
Constru
tors 
an be base elements of the set;

◮
Constru
tors 
an be a fun
tions that takes set elements and return

new set elements.

◮
Manipulation is done via �pattern mat
hing� over the indu
tive

de�nitions.
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Coq

Overview

◮
Developed by Huet/Coquand at INRIA in 1984;

◮
First version released in 1989, indu
tive types were added in 1991;

◮
Continuous development and in
reasing usage sin
e then;

◮
The underlying logi
 is the Cal
ulus of Constru
tions with Indu
tive

De�nitions;

◮
It is implemented by a typed fun
tional programming with a higher

order logi
 language 
alled Gallina;

◮
Intera
tion with the user is via a 
ommand language 
alled Verna
ular;

◮
Constru
tive logi
 with large standard library and user 
ontributions

base;

◮
Extensible environment;

◮
All resour
es freely available from http://
oq.inria.fr/.
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Coq

User session

The proof 
an be 
onstru
ted dire
tly ou indire
tly.

In the indire
t 
ase,

◮
The initial goal is the theorem/spe
i�
ation supplied by the user;

◮
The environment and the 
ontext are initially empty;

◮
The appli
ation of a �ta
ti
s� substitutes the 
urrent goal for zero ou

more subgoals;

◮
The 
ontext 
hanges and might in
orporate new hypotheses;

◮
The pro
ess is repeated for ea
h subgoal, until no one subgoal remains;

◮
The proof/term is 
onstru
ted from the sequen
e of ta
ti
s used.
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Coq

Ta
ti
s usage

◮
Inferen
e rules map premises to 
on
lusions;

◮
Forward reasoning is the pro
ess of moving from premises to


on
lusions;

◮
Example: from a proof of a and a proof of b one 
an prove a ∧ b;

◮
Ba
kward reasoning is the pro
ess of moving from 
on
lusions to

premises;

◮
Example: to prove a ∧ b one has to prove a and also prove b;

◮
Coq uses ba
kward reasoning;

◮
They are implemented by �ta
ti
s�;

◮
A ta
ti
 redu
es a goal to its subgoals, if any.
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Formalization Proje
ts

Introdu
tion

◮
Great and in
reasing interest in formal proof and program

development over the re
ent years;

◮
Main areas in
lude:

◮
Programming language semanti
s formalization;

◮
Mathemati
s formalization;

◮
Edu
ation.

◮
Important proje
ts in both a
ademy and industry;

◮
Top 100 theorems (88% formalized);

◮
The trend is 
learly set.
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Formalization Proje
ts

Four Color Theorem

◮
Stated in 1852, proved in 1976 and again in 1995;

◮
The two proofs used 
omputers to a some extent, but were not fully

me
hanized;

◮
In 2005, Georges Gonthier (Mi
rosoft Resear
h) and Benjamin Werner

(INRIA) produ
ed a proof s
ript that was fully 
he
ked by a ma
hine;

◮
Milestone in the history of 
omputer assisted proo�ng;

◮
60,000 lines of Coq s
ript and 2,500 lemmas;

◮
Byprodu
ts.
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Formalization Proje
ts

Four Color Theorem

�Although this work is purportedly about using 
omputer

programming to help doing mathemati
s, we expe
t that most of

its fallout will be in the reverse dire
tion using mathemati
s to

help programming 
omputers.�

Georges Gonthier
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Formalization Proje
ts

Odd Order Theorem

◮
Also known as the Feit-Thomson Theorem;

◮
Important to mathemati
s (in the 
lassi�
ation of �nite groups) and


ryptography;

◮
Conje
tured in 1911, proved in 1963;

◮
Formally proved by a team led by Georges Gonthier in 2012;

◮
Six years with full-time dedi
ation;

◮
Huge a
hievement in the history of 
omputer assisted proo�ng;

◮
150,000 lines of Coq s
ript and 13,000 theorems;
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Formalization Proje
ts

Compiler Certi�
ation

◮
CompCert, a fully veri�ed 
ompiler for a large subset of C that

generates PowerPC 
ode;

◮
Obje
t 
ode is 
erti�ed to 
omply with the sour
e 
ode in all 
ases;

◮
Appli
ations in avioni
s and 
riti
al software systems;

◮
Not only 
he
ked, but also developed in Coq;

◮
Three persons-years over a �ve yers period;

◮
42,000 lines of Coq 
ode.
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Formalization Proje
ts

Mi
rokernel Certi�
ation

◮
Criti
al 
omponent of operating systems, runs in privileged mode;

◮
Harder to test in all situations;

◮
seL4, written in C (10,000 lines), was fully 
he
ked in HOL/Isabelle;

◮
No 
rash, no exe
ution of any unsafe operation in any situation;

◮
Proof is 200,000 lines long;

◮
11 persons-years, 
an go down to 8, 100% overhead over a

non-
erti�ed proje
t.

Mar
us Ramos (UFPE/UNIVASF) CFGs Formalization September 09, 2014 26 / 59



Formalization Proje
ts

Digital Se
urity Certi�
ation

◮
JavaCard smart 
ard platform;

◮
Personal data su
h as banking, 
redit 
ard, health et
;

◮
Multiple appli
ations by di�erent 
ompanies;

◮
Con�den
e and integrity must be assured;

◮
Formalization of the behaviour and the properties of its 
omponents;

◮
Complete 
erti�
ation, highest level a
hieved;

◮
INRIA, S
hlumberger and Gemalto.
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Current work

S
ope

Context-free language theory:

◮
Relevant to 
omputer language de�nition and pro
essing;

◮
Context-free languages are represented by 
ontext-free grammars;

◮
Fo
us on results dire
tly related to 
ontext-free grammars;

◮
Sta
k-automata will be 
onsidered in the future.
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Current work

Motivation

◮
The large amount of formalization already existing for regular

language theory;

◮
The apparent absen
e of a similar formalization e�ort for 
ontext-free

language theory, at least in the Coq proof assistant and

◮
The high interest in 
ontext-free language theory formalization as a


onsequen
e of its pra
ti
al importan
e in 
omputer te
hnology (e.g.


orre
tness of language pro
essing software).
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Current work

Obje
tives

Prove theorems about 
ontext-free language theory:

1

Closure properties (union, 
on
atenation and Kleene star);

2

Simpli�
ation of 
ontext-free grammars;

3

Normal forms for 
ontext-free grammars;

4

Pumping lemma for 
ontext-free languages.

Using Coq proof assistant + CoqIDE.
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Current work

This presentation

Closure of 
ontext-free languages under union, 
on
atenation and Kleene

star:

1

Representation of 
ontext-free grammars and string derivations;

2

Representation of 
losure grammars;

3

Che
k that 
ontext-free languages are 
losed under the operations;

4

Proof that the proposed 
losure grammars generate the desired

languages:

◮
All inputs produ
e 
orre
t outputs (dire
t operation);

◮
All outputs are 
orre
t results from some inputs (inverse operation).

5

A pair of theorems for ea
h operation (total of six).
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Current work

Grammar

G = (V,Σ, P, S), where:

◮ Σ is the set of terminal symbols;

◮ N = V − Σ is the set of non-terminal symbols;

◮ P is the set of rules α → β, with α ∈ N and β ∈ V ∗
;

◮ S ∈ N is the start symbol.

Re
ord 
fg: Type:= {

non_terminal: Type;

terminal: Type;

start_symbol: non_terminal;

sf:= list (non_terminal + terminal);

rules: non_terminal -> sf -> Prop }.
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Current work

Example

◮ G = ({S,X, Y, a, b, c}, {a, b, c}, {S → aS, S → b}, S)

Indu
tive nt1: Type:= S | X | Y.

Indu
tive t1: Type:= a | b | 
.

Indu
tive rs1: nt1 -> list (nt1+t1) -> Prop:=

r11: rs1 S [inr a;inl S℄

| r12: rs1 S [inr b℄.

Definition g1:= {|

non_terminal:= nt1;

terminal:= t1;

start_symbol:= S;

rules:= rs1 |}.
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Current work

Derivation

◮ s ⇒∗ s

◮ s1 ⇒
∗ s2 l s3 and l → r implies s1 ⇒

∗ s2 r s3

Indu
tive derives (g: 
fg): sf g -> sf g -> Prop :=

| derives_refl: forall s: sf g,

derives g s s

| derives_step: forall s1 s2 s3: sf g,

forall left: non_terminal g,

forall right: sf g,

derives g s1 (s2 ++ inl left :: s3)->

rules g left right ->

derives g s1 (s2 ++ right ++ s3).
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Current work

Senten
e generation

◮ S ⇒∗ s

Definition generates (g: 
fg) (s: sf g): Prop:=

derives g [inl (start_symbol g)℄ s.
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Current work

Example

Lemma gen_g1_aab: generates g1 ([inr a℄++[inr a℄++[inr b℄).

Proof.

unfold generates.

rewrite <- app_nil_l. rewrite <- app_nil_r.

repeat rewrite <- app_asso
.

rewrite <- (app_nil_l [inl (start_symbol g1)℄).

rewrite <- (app_nil_r [inl (start_symbol g1)℄).

apply derives_step with (left:=S)(s2:=[℄++[inr a℄++[inr a℄).

rewrite <- app_nil_r.

repeat rewrite <- app_asso
.

apply derives_step with (left:=S)(right:=[inr a℄++[inl S℄).

rewrite app_nil_l. rewrite app_nil_r.

apply derives_dire
t.

apply r11. apply r11. apply r12.

Qed.
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Current work

Union

Semanti
s

Let L1, L2 be 
ontext-free languages.

◮ ∀w1 ∈ L1, w1 ∈ L1 ∪ L2;

◮ ∀w2 ∈ L2, w2 ∈ L1 ∪ L2;

◮ L1 ∪ L2 
ontains no other strings;

◮ L1 ∪ L2 is 
ontext-free.
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Current work

Union

General

◮ G1 = (V1,Σ1, P1, S1)

◮ G2 = (V2,Σ2, P2, S2)

◮ G3 = (V1 ∪ V2 ∪ {S3},Σ1 ∪ Σ2, P1 ∪ P2 ∪ {S3 → S1, S3 → S2}, S3)

Definition g_uni (g1 g2: 
fg): 
fg := {|

non_terminal:= g_uni_nt g1 g2;

terminal:= g_uni_t g1 g2;

start_symbol:= Start_uni g1 g2;

rules:= g_uni_rules g1 g2 |}.
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Current work

Union

Terminals

◮ Σ3 = Σ1 ∪ Σ2

Definition g_uni_t (g1 g2: 
fg): Type:=

(terminal g1 + terminal g2).
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Current work

Union

Non-terminals

◮ V3 = V1 ∪ V2 ∪ {S3}

Indu
tive g_uni_nt (g1 g2: 
fg): Type :=

| Start_uni : g_uni_nt g1 g2

| Transf1_uni : non_terminal g1 -> g_uni_nt g1 g2

| Transf2_uni : non_terminal g2 -> g_uni_nt g1 g2.
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Current work

Union

Maps

◮
Every symbol (string) of G1 is a symbol (string) of G3.

Definition g_uni_sf_lift_left (g1 g2: 
fg)

(
: non_terminal g1 + terminal g1):

g_uni_nt g1 g2 + g_uni_t g1 g2:=

mat
h 
 with

| inl nt => inl (Transf1_uni g1 g2 nt)

| inr t => inr (inl t)

end.
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Current work

Union

Maps

◮
Every symbol (string) of G2 is a symbol (string) of G3.

Definition g_uni_sf_lift_right (g1 g2: 
fg)

(
: non_terminal g2 + terminal g2):

g_uni_nt g1 g2 + g_uni_t g1 g2:=

mat
h 
 with

| inl nt => inl (Transf2_uni g1 g2 nt)

| inr t => inr (inr t)

end.
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Current work

Union

Rules

◮
Every rule of G1 is a rule of G3

◮
Every rule of G2 is a rule of G3

◮ S3 → S1 is a rule of G3

◮ S3 → S2 is a rule of G3

N1 ∩N2 = ∅.
S3 /∈ N1 ∪N2.
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Current work

Union

Rules

Indu
tive g_uni_rules (g1 g2: 
fg): g_uni_nt g1 g2 ->

list (g_uni_nt g1 g2 + g_uni_t g1 g2) -> Prop :=

| Start1_uni: g_uni_rules g1 g2 (Start_uni g1 g2)

[inl (Transf1_uni g1 g2 (start_symbol g1))℄

| Start2_uni: g_uni_rules g1 g2 (Start_uni g1 g2)

[inl (Transf2_uni g1 g2 (start_symbol g2))℄

| Lift1_uni: forall nt s,

rules g1 nt s ->

g_uni_rules g1 g2 (Transf1_uni g1 g2 nt)

(map (g_uni_sf_lift_left g1 g2) s)

| Lift2_uni: forall nt s,

rules g2 nt s ->

g_uni_rules g1 g2 (Transf2_uni g1 g2 nt)

(map (g_uni_sf_lift_right g1 g2) s).
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Current work

Union

Dire
t operation

◮ w1 ∈ L(G1) implies w1 ∈ L(G3) and

◮ w2 ∈ L(G2) implies w2 ∈ L(G3)

Theorem g_uni_
orre
t (g1 g2: 
fg)(s1: sf g1)(s2: sf g2):

(generates g1 s1 -> generates (g_uni g1 g2)

(map (g_uni_sf_lift1 g1 g2) s1))

/\

(generates g2 s2 -> generates (g_uni g1 g2)

(map (g_uni_sf_lift2 g1 g2) s2)).
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Current work

Union

Inverse operation

w ∈ L(G3) implies:

◮ w ∈ L(G1) or

◮ w ∈ L(G2)

Theorem g_uni_
orre
t_inv (g1 g2: 
fg)(s: sf (g_uni g1 g2)):

generates (g_uni g1 g2) s ->

(s=[inl (start_symbol (g_uni g1 g2))℄)

\/

(exists s1: sf g1,

(s=(map (g_uni_sf_lift_left g1 g2) s1) /\ generates g1 s1))

\/

(exists s2: sf g2,

(s=(map (g_uni_sf_lift_right g1 g2) s2) /\ generates g2 s2)).
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Current work

Con
atenation

Semanti
s

Let L1, L2 be 
ontext-free languages.

◮ ∀w1 ∈ L1,∀w2 ∈ L2, w1w2 ∈ L1L2;

◮ L1L2 
ontains no other strings;

◮ L1L2 is 
ontext-free.
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Current work

Con
atenation

General

◮ G1 = (V1,Σ1, P1, S1)

◮ G2 = (V2,Σ2, P2, S2)

◮ G3 = (V1 ∪ V2 ∪ {S3},Σ1 ∪ Σ2, P1 ∪ P2 ∪ {S3 → S1S2}, S3)

Definition g_
at (g1 g2: 
fg): 
fg := {|

non_terminal:= g_
at_nt g1 g2;

terminal:= g_
at_t g1 g2;

start_symbol:= Start_
at g1 g2;

rules:= g_
at_rules g1 g2 |}.
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Current work

Con
atenation

Dire
t operation

◮ w1 ∈ L(G1) and

◮ w2 ∈ L(G2)

implies w1w2 ∈ L(G3).

Theorem g_
at_
orre
t (g1 g2: 
fg)(s1: sf g1)(s2: sf g2):

generates g1 s1

/\

generates g2 s2 ->

generates (g_
at g1 g2)

((map (g_
at_sf_lift_left g1 g2) s1)++

(map (g_
at_sf_lift_right g1 g2) s2)).
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Current work

Con
atenation

Inverse operation

w ∈ L(G3) implies:

◮ w = w1w2 and

◮ w1 ∈ L(G1) and
◮ w2 ∈ L(G2).

Theorem g_
at_
orre
t_inv (g1 g2: 
fg)(s: sf (g_
at g1 g2)):

generates (g_
at g1 g2) s ->

exists s1: sf g1,

exists s2: sf g2,

s =(map (g_
at_sf_lift_left g1 g2) s1)++

(map (g_
at_sf_lift_right g1 g2) s2)

/\

generates g1 s1

/\

generates g2 s2.
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Current work

Kleene star

Semanti
s

Let L be a 
ontext-free language.

◮ ǫ ∈ L∗
;

◮ ∀s′ ∈ L∗,∀s ∈ L, s′s ∈ L∗
;

◮ L∗

ontains no other strings;

◮ L∗
is 
ontext-free.
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Current work

Kleene star

General

◮ G1 = (V1,Σ1, P1, S1)

◮ G3 = (V1 ∪ {S3},Σ1, P1 ∪ {S3 → S3S1, S3 → ǫ}, S3)

Definition g_
lo (g: 
fg): 
fg := {|

non_terminal:= g_
lo_nt g;

terminal:= g_
lo_t g;

start_symbol:= Start_
lo g;

rules:= g_
lo_rules g |}.
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Current work

Kleene star

Dire
t operation

◮ ǫ ∈ L(G3);

◮ s′ ∈ L(G3) and s ∈ L(G1) implies s′s ∈ L(G3).

Theorem g_
lo_
orre
t (g: 
fg)(s: sf g)(s': sf (g_
lo g)):

generates (g_
lo g) nil

/\

(generates (g_
lo g) s' /\ generates g s ->

generates (g_
lo g) (s'++ (map (g_
lo_sf_lift g)) s)).
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Current work

Kleene star

Inverse operation

w ∈ L(G3) implies:

◮ w = ǫ or

◮ w = s′s and s′ ∈ L(G3) and s ∈ L(G1).

Theorem g_
lo_
orre
t_inv (g: 
fg)(s: sf (g_
lo g)):

generates (g_
lo g) s ->

(s=[℄)

\/

(s=[inl (start_symbol (g_
lo g))℄)

\/

(exists s': sf (g_
lo g),

exists s�: sf g,

generates (g_
lo g) s' / generates g s� /\

s=s'++map (g_
lo_sf_lift g) s�).
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Current work

Development

◮
Approximately 1.400 lines of plain Coq s
ript;

◮
Indu
tion on predi
ate derives;

◮
Dire
t hypothesis manipulation;

◮
Libraries As
ii, String and List;

◮
Available for download at:

http://www.univasf.edu.br/~mar
us.ramos/
oq/
fg-
losure.v
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Current work

Simpli�
ation

Partially 
ompleted

◮
Simpli�
ation = symbol elimination + rule elimination;

◮
Symbol n:

◮
Useful: n ⇒∗ s, s ∈ Σ∗

;

◮
Rea
hable: S ⇒∗ αnβ.

◮
Every non-empty 
ontext-free language is generated by a 
ontext-free

grammar with only useful and rea
hable symbols;

◮
Approximately 4.000 lines of Coq s
ript;

◮
Dozens of additional lemmas on generi
 lists, 
ontext-free grammars

and 
ontext-free derivations were also proved;

◮
116 lemmas and theorems in total (
losure + simpli�
ation) so far;

◮
Now working on rule elimination:

◮
Empty rules;

◮
Unit rules.
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Con
lusions

Appli
ations

◮
A
ademy;

◮
Industry;

◮
Software and hardware 
erti�
ation;

◮
Software and hardware development;

◮
Proof 
he
king;

◮
Theoreti
al formalization;

◮
Mathemati
s database (e.g. QED proje
t).
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Con
lusions

Computers and mathemati
s

◮
Pra
titioners base is still small;

◮
Learning 
urve grows slowly;

◮
Advantages of formalization are immense;

◮
Important industrial proje
ts;

◮
Disadvantages are being gradually eliminated.
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Con
lusions

Computers and mathemati
s

◮
Not easy, but very rewarding;

◮
Hope you have enjoyed;

◮
Hope you want to go further;

◮
Ask me if you want referen
es;

◮
Write me if you have questions or suggestions;

◮
Let me know you if plan to work in this area;

◮
Hope to bring more next time;

Thank you!
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