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Introdution

Introdution

Mathematial formalization

+

Context-free language theory

=

Formalization of ontext-free language theory
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Introdution

Introdution

Mathematial formalization

◮
Mahine assisted proof onstrution;

◮
Mahine veri�ed proofs;

◮
Speed, reliability and reuse;

◮
Mathematis and omputer siene;

◮
Interative theorem proving;

◮
Certi�ed hardware and software development.
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Introdution

Introdution

Context-free language theory

◮
Language design, analysis and implementation;

◮
Computation theory;

◮
Fundamental in omputing urriula and omputation pratie.
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Introdution

Introdution

Objetives

◮
Formalization of an important subset of ontext-free language theory;

◮
Using the Coq proof assistant (type theory).

◮
Researh on:

◮
Logis and natural dedution;

◮
Lambda alulus;

◮
Type theory;

◮
Mathematial formalization;

◮
Interative theorem proving.

◮
Build a set of libraries that an be used in:

◮
Eduation;

◮
Certi�ed software onstrution.

◮
Create and develop a ulture of mathematial formalization.
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Introdution

Introdution

History

Bakground:

◮
2011-2012: lasses on lambda alulus, set theory and logi;

◮
2013-2015: self study of proof theory, type theory and Coq;

Formalization:

◮
July 2013 until April 2014: regular languages, Coq as a funtional

programming language;

◮
April 2014 until August 2015: ontext-free languages, fous on

lemmas and theorems;
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Introdution

Introdution

History

Presentations:

◮
02/2014: WTA/EPUSP/USP;

◮
02/2014: Thesis proposal examination;

◮
09/2014: LSFA'14;

◮
07/2015: DCC/FC/UP;

◮
08/2015: LSFA'15.

Thesis writing:

◮
September 2015 until Deember 2015.
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A Sampler of Formally Cheked Projets

A Sampler of Formally Cheked Projets

Mathematial formalization is a mature ativity:

◮
Use over the years;

◮
Diversity of proof assistants and underlying theories;

◮
Development of proof assistants tehnology;

◮
Size, omplexity and importane of many di�erent projets;

◮
Theoretial and tehnologially oriented;

◮
Aademy and industry oriented;

◮
A lear trend;

◮
A point of no return.
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A Sampler of Formally Cheked Projets

A Sampler of Formally Cheked Projets

Some remarkable projets:

◮
Four Color Theorem;

◮
Odd Order Theorem;

◮
Kepler Conjeture;

◮
Homotopy Type Theory and Univalent Foundations of Mathematis;

◮
Compiler Certi�ation;

◮
Mirokernel Certi�ation;

◮
Digital Seurity Certi�ation.
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Related Work

Related Work

◮
Language and automata theory has been subjet of formalization sine

the mid-1980s, when Kreitz used the Nuprl proof assistant to prove

results about deterministi �nite automata and the pumping lemma

for regular languages;

◮
Sine then, the theory of regular languages has been the subjet of

intense formalization by various researhers using many di�erent proof

assistants;

◮
The formalization of ontext-free language theory, on the other hand,

is more reent and inludes fewer aomplishments, mostly

onentrated in erti�ed parser generation.
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Related Work

Related Work

Context-free languages

◮
A reent and important referene is the work of Christian Dozkal,

Jan-Oliver Kaiser and Gert Smolka;

◮
Following the struture of the book by Kozen, they did a fairly

omplete formalization of regular languages theory;

◮
All the development was done in Coq, is only 1,400 lines long, and

bene�ted from the use of the SSRe�et Coq plug-in.
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Related Work

Related Work

Context-free languages

◮
Most of the extensive e�ort, however, started in 2010 and has been

devoted to the erti�ation and validation of parser generators;

◮
On the more theoretial side, Norrish and Barthwal published in 2010

on general ontext-free language theory formalization using the HOL4

proof assistant, inluding:

◮
The existene of normal forms for grammars;

◮
Pushdown automata,

◮
Closure properties and

◮
A proof of the Pumping Lemma for ontext-free languages.

◮
In 2015, Firsov and Uustalu proved the existene of a Chomsky

Normal Form grammar for every general ontext-free grammar, using

the Agda proof assistant.
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Related Work

Related Work

Summary

Norrish & Barthwal2010 Firsov & Uustalu

Proof assistant HOL4 Agda

Closure X ×

Simpli�ation X only empty and unit rules

CNF X X

GNF X ×
PDA X ×

PL X ×
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Related Work

Related Work

Motivation

◮
Until 2015, the only omprehensive work is the one by Norrish and

Barthwal (HOL4 in 2010);

◮
The Pumping Lemma has not been published;

◮
Firsov and Uustalu add a more limited implementation (Agda in 2015);

◮
No formalization in Coq.

◮
Formalization of the PL in HOL4 disovered only in november 2015.
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Formalization of Context-Free Language Theory

Formalized Results

◮
Closure properties of ontext-free languages and grammars;

◮
Context-free grammar simpli�ation;

◮
Chomsky Normal Form (CNF);

◮
Pumping Lemma (PL) for ontext-free languages.

PL depends on CNF, whih in turn depends on grammar simpli�ation.
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Formalization of Context-Free Language Theory

Phases

1

Seletion of an underlying formal logi to express the theory and then

a tool that supports it adequately;

2

Representation of the objets of the universe of disourse in this logi;

3

Implementation of a set of basi transformations and mappings over

these objets;

4

Statement of the lemmas and theorems that desribe the properties

and the behaviour of these objets, and establish a onsistent and

omplete theory;

5

Formal derivation of proofs of these lemmas and theorems, leading to

proof objets that an on�rm their validity.
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Formalization of Context-Free Language Theory

De�nitions

◮
Symbols (inluding terminal and non-terminal);

◮
Sentential forms (strings of terminal and non-terminal symbols);

◮
Sentenes (strings of terminal symbols);

◮
Context-free grammars;

◮
Derivations.
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Formalization of Context-Free Language Theory

Sequene

1

General purpose libraries;

2

Closure properties;

3

Grammar simpli�ation→ Chomsky Normal Form → Pumping

Lemma.
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Formalization of Context-Free Language Theory

Support

◮
Basi lemmas on arithmeti, lists and logi;

◮
Basi lemmas on ontext-free languages and grammars;

◮
Basi lemmas on binary trees and their relation to CNF grammars;
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Formalization of Context-Free Language Theory

Basi De�nitions

Grammars

Terminal symbols as a type. Example:

Indutive nt: Type:=

| a

| b

| .

Non-terminal symbols as a type. Example:

Indutive nt: Type:=

| X

| Y

| Z.
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Formalization of Context-Free Language Theory

Basi De�nitions

Grammars

Variables and notations:

Variables non_terminal terminal: Type.

Notation sf := (list (non_terminal + terminal)).

Notation sentene := (list terminal).

Notation nlist:= (list non_terminal).

Examples:

[inr a; inr a; inr b; inr ℄

[inr a; inl X; inl Y; inr b℄

[inl Z; inl Z; inl X℄
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Formalization of Context-Free Language Theory

Basi De�nitions

Grammars

(V,Σ, P, S)

Reord fg (non_terminal terminal : Type): Type:= {

start_symbol: non_terminal;

rules: non_terminal→ sf → Prop;

rules_finite:

∃ n: nat,

∃ ntl: nlist,
∃ tl: tlist,
rules_finite_def start_symbol rules n ntl tl }.
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Formalization of Context-Free Language Theory

Basi De�nitions

Grammars

Definition rules_finite_def

(non_terminal terminal : Type)

(ss: non_terminal)

(rules: non_terminal→ sf → Prop)

(n: nat)

(ntl: list non_terminal)

(tl: list terminal) :=

In ss ntl ∧
(∀ left: non_terminal,

∀ right: list (non_terminal + terminal),

rules left right →
length right ≤ n ∧
In left ntl ∧
(∀ s : non_terminal, In (inl s) right → In s ntl) ∧
(∀ s : terminal, In (inr s) right → In s tl)).
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Formalization of Context-Free Language Theory

Basi De�nitions

Grammars

Example:

G = ({S′, A,B, a, b}, {a, b}, {S′ → aS′, S′ → b}, S′)

that generates language a∗b:

Indutive nt: Type:= | S' | A | B.

Indutive t: Type:= | a | b.

Indutive rs: nt → list (nt + t) → Prop:=

r1: rs S' [inr a; inl S'℄

| r2: rs S' [inr b℄.
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Formalization of Context-Free Language Theory

Basi De�nitions

Grammars

Lemma rs_finite:

∃ n: nat,

∃ ntl: nlist,
∃ tl: tlist,
In S' ntl ∧
∀ left: non_terminal,
∀ right: sf,
rs1 left right →
(length right ≤ n) ∧
(In left ntl) ∧
(∀ s: non_terminal, In (inl s) right → In s ntl) ∧
(∀ s: terminal, In (inr s) right → In s tl).

Proof.

admit.

Qed.
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Formalization of Context-Free Language Theory

Basi De�nitions

Grammars

Definition g: fg nt t:= {|

start_symbol:= S';

rules:= rs;

rules_finite:= rs_finite |}.
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Formalization of Context-Free Language Theory

Basi De�nitions

Derivations

s1 ⇒
∗ s2

Indutive derives

(non_terminal terminal : Type)

(g : fg non_terminal terminal)

: sf → sf → Prop :=

| derives_refl :

∀ s : sf,

derives g s s

| derives_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)
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Formalization of Context-Free Language Theory

Basi De�nitions

Derivations

S ⇒ α1 ⇒

derives

︷ ︸︸ ︷

α2 ⇒ ...⇒ αn−1
︸ ︷︷ ︸

generates

⇒ αn ⇒ ω

︸ ︷︷ ︸

produes

Definition generates (g: fg) (s: sf): Prop:=

derives g [inl (start_symbol g)℄ s.

Definition produes (g: fg) (s: sentene): Prop:=

generates g (map terminal_lift s).
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Formalization of Context-Free Language Theory

Basi De�nitions

Derivations

Example:

Lemma derives_g_aab:

derives g [inl S'℄ [inr a; inr a; inr b℄.

Proof.

apply derives_step with (s2:=[inr a; inr a℄)(left:=S')(right:=[inr b℄).

apply derives_step with (s2:=[inr a℄)(left:=S')(right:=[inr a;inl S'℄).

apply derives_start with (left:=S')(right:=[inr a;inl S'℄).

apply r1.

apply r1.

apply r2.

Qed.
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Formalization of Context-Free Language Theory

Basi De�nitions

Derivations

Examples:

◮
derives g [inr a; inl S'℄ [inr a; inr b℄;

◮
generates g [inl S'℄ [inr a; inl S'℄ and

◮
produes g [inl S'℄ [inr a; inr b℄.
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Formalization of Context-Free Language Theory

Basi De�nitions

Derivations

Definition produes_empty

(g: fg non_terminal terminal): Prop:=

produes g [℄.

Definition produes_non_empty

(g: fg non_terminal terminal): Prop:=

∃ s: sentene, produes g s ∧ s 6= [℄.
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Formalization of Context-Free Language Theory

Basi De�nitions

Derivations

Definition appears (g: fg) (s: non_terminal + terminal): Prop:=

math s with

| inl n ⇒ ∃ left: non_terminal,
∃ right: sf,
rules g left right ∧ ((n=left) ∨ (In (inl n) right))

| inr t ⇒ ∃ left: non_terminal,
∃ right: sf,
rules g left right ∧ In (inr t) right

end.
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Formalization of Context-Free Language Theory

Basi De�nitions

Derivations

To map a sentene (sentene) into a sentential form (sf):

Definition terminal_lift (t: terminal):

non_terminal + terminal:=

inr t.
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Formalization of Context-Free Language Theory

Basi De�nitions

Derivations

Two grammars g1 (with start symbol S1) and g2 (with start symbol S2) are

equivalent (denoted g1 ≡ g2) if they generate the same language, that is,

∀s, (S1 ⇒
∗

g1
s)↔ (S2 ⇒

∗

g2
s). This is represented in our formalization in

Coq by the prediate g_equiv:

Definition g_equiv

(non_terminal1 non_terminal2 terminal : Type)

(g1: fg non_terminal1 terminal)

(g2: fg non_terminal2 terminal): Prop:=

∀ s: sentene,

produes g1 s ↔ produes g2 s.
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Formalization of Context-Free Language Theory

Basi De�nitions

Languages

L(G) = {w |S ⇒∗

g w}

Definition lang (terminal: Type):= sentene→ Prop.

Definition lang_of_g (g: fg): lang :=

fun w: sentene ⇒ produes g w.

Definition lang_eq (l k: lang) :=

∀ w, l w ↔ k w.

Infix "==" := lang_eq (at level 80).
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Formalization of Context-Free Language Theory

Basi De�nitions

Languages

Definition fl (terminal: Type) (l: lang terminal): Prop:=

∃ non_terminal: Type,
∃ g: fg non_terminal terminal,

l == lang_of_g g.

Definition ontains_empty (l: lang): Prop:=

l [℄.

Definition ontains_non_empty (l: lang): Prop:=

∃ w: sentene,

l w ∧ w 6= [℄.
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Formalization of Context-Free Language Theory

Generi CFG Library

General results on ontext-free gramars and languages:

◮
4,393 lines of Coq sript,

∼
18.3% of the total;

◮
105 lemmas and theorems;

◮
Alternative de�nitions for prediate derives;

◮
Supports the whole formalization;

◮
Some examples follow.
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Formalization of Context-Free Language Theory

Generi CFG Library

◮
Derivation transitivity:

∀g, s1, s2, s3, (s1 ⇒
∗

g s2)→ (s2 ⇒
∗

g s3)→ (s1 ⇒
∗

g s3)

◮
Context independene:

∀g, s1, s2, s, s
′, (s1 ⇒

∗

g s2)→ (s · s1 · s
′ ⇒∗

g s · s2 · s
′)

◮
Conatenation:

∀g, s1, s2, s3, s4, (s1 ⇒
∗

g s2)→ (s3 ⇒
∗

g s4)→ (s1 · s3 ⇒
∗

g s2 · s4)

◮
Derivation independene: ∀g, s1, s2, s3, (s1 · s2 ⇒

∗

g s3)→
∃s′

1
, s′

2
| (s3 = s′

1
· s′

2
) ∧ (s1 ⇒

∗

g s
′

1
) ∧ (s2 ⇒

∗

g s
′

2
)

◮
Derivation of a string of terminals from a non-terminal symbol:

∀g, s1, s2, n, w, (s1 · n · s2 ⇒
∗

g w)→ ∃ w′ | (n⇒∗

g w
′)

◮
Diret or indiret derivation: ∀g, n,w, (n⇒∗

g w)→ (n→g

w) ∨ (∃ right |n→g right ∧ right⇒∗

g w)

◮
Grammar equivalene transitivity:

∀g1, g2, g3, (g1 ≡ g2) ∧ (g2 ≡ g3)→ (g1 ≡ g3)
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Formalization of Context-Free Language Theory

Generi CFG Library

Alternative de�nitions for prediate derives:

◮
Used to ease some proofs;

◮
Equivalene has been proved;

◮
Standard derives has been used in statements.
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Formalization of Context-Free Language Theory

Generi CFG Library

Indutive derives2

(non_terminal terminal : Type)

(g : fg non_terminal terminal)

: sf → sf → Prop :=

| derives2_refl :

∀ s : sf,

derives2 g s s

| derives2_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives2 g (s1 ++right ++s2) s3 →
rules g left right →
derives2 g (s1 ++inl left :: s2) s3.
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Formalization of Context-Free Language Theory

Generi CFG Library

Indutive derives3

(g: fg): non_terminal→ sentene→ Prop :=

| derives3_rule:

∀ (n: non_terminal) (lt: sentene),

rules g n (map inr lt) → derives3 g n lt

| derives3_step:

∀ (n: non_terminal) (ltnt: sf) (lt: list terminal),

rules g n ltnt → derives3_aux g ltnt lt → derives3 g n lt

with derives3_aux (g: fg): sf → sentene→ Prop :=

| derives3_aux_empty:

derives3_aux g [℄ [℄

| derives3_aux_t:

∀ (t: terminal) (ltnt: sf) (lt: sentene),

derives3_aux g ltnt lt → derives3_aux g (inr t :: ltnt) (t :: lt)

| derives3_aux_nt:

∀ (n: non_terminal) (lt lt': sentene) (ltnt: sf),

derives3_aux g ltnt lt → derives3 g n lt' →
derives3_aux g (inl n :: ltnt) (lt' ++lt).
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Formalization of Context-Free Language Theory

Generi CFG Library

Indutive derives6

(non_terminal terminal : Type)

(g : fg non_terminal terminal)

: nat → sf → sf → Prop :=

| derives6_0 :

∀ s : sf,

derives6 g 0 s s

| derives6_sum :

∀ (left : non_terminal)

∀ (right : sf)

∀ (i : nat)

∀ (s1 s2 s3 : sf),

rules g left right →
derives6 g i (s1 ++right ++s2) s3 →
derives6 g (S i) (s1 ++[inl left℄ ++s2) s3.
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Formalization of Context-Free Language Theory

Generi CFG Library

The equivalene of de�nitions derives, derives2, derives3 and

derives6 has been proved:

◮
derives_equiv_derives2, for

derives g s1 s2 ↔ derives2 g s1 s2;

◮
derives_equiv_derives3, for

derives g n (map inr s) ↔ derives3 g n s;

◮
derives_equiv_derives6, for

derives g s1 s2 ↔ ∃ n, derives6 g n s1 s2.
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Formalization of Context-Free Language Theory

Method

Most of the work share a ommon objetive: to onstrut a new grammar

from an existing one (or two existing ones). This is the ase of:

◮
Closure properties:

◮
Union;

◮
Conatenation;

◮
Kleene star;

◮
Grammar simpli�ation:

◮
Elimination of empty rules;

◮
Elimination of unit rules;

◮
Elimination of useless symbols;

◮
Elimination of inaessible symbols;

◮
Chomsky Normal Form (CNF).

Thus, a ommon method to be used in all these ases has been devised.
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Formalization of Context-Free Language Theory

Method

1

Depending on the ase, de�ne a new type of non-terminal symbols;

this will be important, for example, when we want to guarantee that

the start symbol of the grammar does not appear in the right-hand

side of any rule or when we have to onstrut new non-terminals from

the existing ones;

2

Indutively de�ne the rules of the new grammar, in a way that it

allows the onstrution of the proofs that the resulting grammar has

the required properties; these new rules will likely make use of the new

non-terminal symbols desribed above;
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Formalization of Context-Free Language Theory

Method

3

De�ne the new grammar by using the new non-terminal symbols and

the new rules; de�ne the new start symbol (whih might be a new

symbol or an existing one) and build a proof of the �niteness of the

set of rules for this new grammar;

4

State and prove all the lemmas and theorems that will assert that the

newly de�ned grammar has the desired properties;

5

Consolidate the results within the same sope and �nally with the

previously obtained results.

Marus Ramos (UFPE) Language Formalization January 18th, 2016 47 / 207



Formalization of Context-Free Language Theory

Closure Properties

Union

Given two arbitrary ontext-free grammars g1 and g2, the following

de�nitions are used to onstrut g3 suh that L(g3) = L(g1) ∪ L(g2) (that
is, the language generated by g3 is the union of the languages generated by

g1 and g2).
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Formalization of Context-Free Language Theory

Closure Properties

Union

◮
For the new set of non-terminals:

◮
All the non-terminals of g1;

◮
All the non-terminals of g2;

◮
A fresh new non-terminal symbol (S3).

◮
For the new set of rules:

◮
All the rules of g1;

◮
All the rules of g2;

◮
Two new rules: S3 → S1 and S3 → S2.

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The new non-terminal (S3) as the start symbol.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Indutive g_uni_nt (non_terminal_1 non_terminal_2 : Type): Type:=

| Start_uni

| Transf1_uni_nt: non_terminal_1→ g_uni_nt

| Transf2_uni_nt: non_terminal_2→ g_uni_nt.

Notation sf1:= (list (non_terminal_1 + terminal)).

Notation sf2:= (list (non_terminal_2 + terminal)).

Notation sfu:= (list (g_uni_nt + terminal)).
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Formalization of Context-Free Language Theory

Closure Properties

Union

Definition g_uni_sf_lift1 (: non_terminal_1 + terminal)

: g_uni_nt + terminal:=

math  with

| inl nt ⇒ inl (Transf1_uni_nt nt)

| inr t ⇒ inr t

end.

Definition g_uni_sf_lift2 (: non_terminal_2 + terminal)

: g_uni_nt + terminal:=

math  with

| inl nt ⇒ inl (Transf2_uni_nt nt)

| inr t ⇒ inr t

end.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Indutive g_uni_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: fg non_terminal_1 terminal)

(g2: fg non_terminal_2 terminal): g_uni_nt → sfu → Prop :=

| Start1_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf1_uni_nt (start_symbol g1))℄

| Start2_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf2_uni_nt (start_symbol g2))℄

| Lift1_uni:

∀ nt: non_terminal_1, ∀ s: sf1,
rules g1 nt s →
g_uni_rules g1 g2 (Transf1_uni_nt nt) (map g_uni_sf_lift1 s)

| Lift2_uni:

∀ nt: non_terminal_2, ∀ s: sf2,
rules g2 nt s →
g_uni_rules g1 g2 (Transf2_uni_nt nt) (map g_uni_sf_lift2 s).
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Formalization of Context-Free Language Theory

Closure Properties

Union

Definition g_uni

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: fg non_terminal_1 terminal)

(g2: fg non_terminal_2 terminal)

: (fg g_uni_nt terminal):=

{| start_symbol:= Start_uni;

rules:= g_uni_rules g1 g2;

rules_finite:= g_uni_finite g1 g2 |}.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Consider grammars G1 and G2:

◮ G1 = ({S1,X1, a, b}, {a, b}, {S1 → aX1,X1 → aX1 | b}, S1);
◮ G2 = ({S2,X2, a, b}, {a, b}, {S2 → aX2,X2 → aX2 | c}, S2).

Then, the new grammar G3 that generates L(G1) ∪ L(G2) an be

expressed as:

G3 = ({S3, S1, S2,X1,X2, a, b, c}, {a, b, c}, P3 , S3)

with P3 ontaining the following rules:

S3 → S1 | S2

S1 → aX1

X1 → aX1 | b

S2 → aX2

X2 → aX2 | c

Marus Ramos (UFPE) Language Formalization January 18th, 2016 54 / 207



Formalization of Context-Free Language Theory

Closure Properties

Union

Indutive non_terminal1: Type:=

| S1

| X1.

Indutive non_terminal2: Type:=

| S2

| X2.

Indutive terminal: Type:=

| a

| b

| .
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Formalization of Context-Free Language Theory

Closure Properties

Union

Indutive rs1:

non_terminal1→ list (non_terminal1 + terminal) → Prop:=

| r11: rs1 S1 [inr a; inl X1℄

| r12: rs1 X1 [inr a; inl X1℄

| r13: rs1 X1 [inr b℄.

Definition g1: fg non_terminal1 terminal := {|

start_symbol:= S1;

rules:= rs1;

rules_finite:= rs1_finite |}.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Indutive rs2:

non_terminal2→ list (non_terminal2 + terminal) → Prop:=

| r21: rs2 S2 [inr a; inl X2℄

| r22: rs2 X2 [inr a; inl X2℄

| r23: rs2 X2 [inr ℄.

Definition g2: fg non_terminal2 terminal := {|

start_symbol:= S2;

rules:= rs2;

rules_finite:= rs2_finite |}.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Definition g3:= g_uni g1 g2.
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Formalization of Context-Free Language Theory

Closure Properties

Conatenation

Given two arbitrary ontext-free grammars g1 and g2, the following

de�nitions are used to onstrut g3 suh that L(g3) = L(g1) · L(g2) (that
is, the language generated by g3 is the onatenation of the languages

generated by g1 and g2).
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Formalization of Context-Free Language Theory

Closure Properties

Conatenation

◮
For the new set of non-terminals:

◮
All the non-terminals of g1;

◮
All the non-terminals of g2;

◮
A fresh new non-terminal symbol (S3).

◮
For the new set of rules:

◮
All the rules of g1;

◮
All the rules of g2;

◮
One new rule: S3 → S1S2.

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The new non-terminal (S3) as the start symbol.
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Formalization of Context-Free Language Theory

Closure Properties

Conatenation

Indutive g_at_nt (non_terminal_1 non_terminal_2 terminal : Type):

Type:=

| Start_at

| Transf1_at_nt: non_terminal_1→ g_at_nt

| Transf2_at_nt: non_terminal_2→ g_at_nt.

Notation sf1:= (list (non_terminal_1 + terminal)).

Notation sf2:= (list (non_terminal_2 + terminal)).

Notation sf:= (list (g_at_nt + terminal)).
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Formalization of Context-Free Language Theory

Closure Properties

Conatenation

Definition g_at_sf_lift1 (: non_terminal_1 + terminal):

g_at_nt + terminal:=

math  with

| inl nt ⇒ inl (Transf1_at_nt nt)

| inr t ⇒ inr t

end.

Definition g_at_sf_lift2 (: non_terminal_2 + terminal):

g_at_nt + terminal:=

math  with

| inl nt ⇒ inl (Transf2_at_nt nt)

| inr t ⇒ inr t

end.
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Formalization of Context-Free Language Theory

Closure Properties

Conatenation

Indutive g_at_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: fg non_terminal_1 terminal)

(g2: fg non_terminal_2 terminal): g_at_nt → sf → Prop :=

| New_at:

g_at_rules g1 g2 Start_at

([ inl (Transf1_at_nt (start_symbol g1))℄++

[ inl (Transf2_at_nt (start_symbol g2))℄)

| Lift1_at:

∀ nt s,

rules g1 nt s →
g_at_rules g1 g2 (Transf1_at_nt nt) (map g_at_sf_lift1 s)

| Lift2_at:

∀ nt s,

rules g2 nt s →
g_at_rules g1 g2 (Transf2_at_nt nt) (map g_at_sf_lift2 s).
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Formalization of Context-Free Language Theory

Closure Properties

Conatenation

Definition g_at

(non_terminal_1 non_terminal_2 terminal : Type)

(g1: fg non_terminal_1 terminal)

(g2: fg non_terminal_2 terminal)

: (fg g_at_nt terminal):=

{| start_symbol:= Start_at;

rules:= g_at_rules g1 g2;

rules_finite:= g_at_finite g1 g2 |}.
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Formalization of Context-Free Language Theory

Closure Properties

Conatenation

Consider grammars G1 and G2:

◮ G1 = ({S1,X1, a, b}, {a, b}, {S1 → aX1,X1 → aX1 | b}, S1);
◮ G2 = ({S2,X2, a, b}, {a, b}, {S2 → aX2,X2 → aX2 | c}, S2).

Then, the new grammar G3 that generates L(G1) · L(G2) an be

expressed as:

G3 = ({S3, S1, S2,X1,X2, a, b, c}, {a, b, c}, P3 , S3)

with P3 ontaining the following rules:

S3 → S1S2

S1 → aX1

X1 → aX1 | b

S2 → aX2

X2 → aX2 | c
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Formalization of Context-Free Language Theory

Closure Properties

Conatenation

Definition g3:= g_at g1 g2.
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Given an arbitrary ontext-free grammar g1, the following de�nitions are

used to onstrut g2 suh that L(g2) = (L(g1))
∗
(that is, the language

generated by g2 is the re�exive and transitive onatenation (Kleene star)

of the language generated by g1).

Marus Ramos (UFPE) Language Formalization January 18th, 2016 67 / 207



Formalization of Context-Free Language Theory

Closure Properties

Kleene star

◮
For the new set of non-terminals:

◮
All the non-terminals of g1;

◮
A fresh new non-terminal symbol (S2).

◮
For the new set of rules:

◮
All the rules of g1;

◮
Two new rules: S2 → S2S1 and S2 → ǫ.

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The new non-terminal (S2) as the start symbol.
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Indutive g_lo_nt (non_terminal : Type): Type :=

| Start_lo : g_lo_nt

| Transf_lo_nt : non_terminal→ g_lo_nt.

Notation sf:= (list (g_lo_nt + terminal)).
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Definition g_lo_sf_lift (: non_terminal + terminal):

g_lo_nt + terminal:=

math  with

| inl nt ⇒ inl (Transf_lo_nt nt)

| inr t ⇒ inr t

end.
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Indutive g_lo_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: g_lo_nt→ sf → Prop :=

| New1_lo:

g_lo_rules g Start_lo ([inl Start_lo℄ ++

[inl (Transf_lo_nt (start_symbol g))℄)

| New2_lo:

g_lo_rules g Start_lo [℄

| Lift_lo:

∀ nt: non_terminal,
∀ s: sf,

rules g nt s →
g_lo_rules g (Transf_lo_nt nt) (map g_lo_sf_lift s).
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Definition g_lo (g: fg non_terminal terminal):

(non_terminal terminal : Type)

(g: fg g_lo_nt terminal):=

{| start_symbol:= Start_lo;

rules:= g_lo_rules g;

rules_finite:= g_lo_finite g |}.

Marus Ramos (UFPE) Language Formalization January 18th, 2016 72 / 207



Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Consider one more grammar

G1 = ({S1,X1, a, b}, {a, b}, {S1 → aX1,X1 → aX1 | b}, S1)

Then, the new grammar G2 that generates L(G1)
∗
an be expressed as:

G2 = ({S2, S1,X1, a, b, c}, {a, b, c}, P2 , S2)

with P2 ontaining the following rules:

S2 → ǫ

S2 → S2S1

S1 → aX1

X1 → aX1 | b
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Definition g2:= g_lo g1.
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Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Conatenation (orretness)

Considering that g3 is the onatenation of g1 and g2 and S3, S1 and S2

are, respetively, the start symbols of g3, g1 and g2)

∀g1, g2, s1, s2, (S1 ⇒
∗

g1
s1) ∧ (S2 ⇒

∗

g2
s2)→ (S3 ⇒

∗

g3
s1s2)
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Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Conatenation (orretness)

Theorem g_at_orret:

∀ g1: fg non_terminal_1 terminal,

∀ g2: fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
generates g1 s1 ∧ generates g2 s2 →
generates (g_at g1 g2)

((map g_at_sf_lift1 s1)++(map g_at_sf_lift2 s2)).
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Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Conatenation (ompleteness)

∀s3, (S3 ⇒
∗

g3
s3)→ ∃s1, s2 | (s3 = s1 · s2) ∧ (S1 ⇒

∗

g1
s1) ∧ (S2 ⇒

∗

g2
s2)

Theorem g_at_orret_inv:

∀ g1: fg non_terminal_1 terminal,

∀ g2: fg non_terminal_2 terminal,

∀ s: sf,

generates (g_at g1 g2) s →
s = [inl (start_symbol (g_at g1 g2))℄ ∨
∃ s1: sf1,
∃ s2: sf2,
s =(map g_at_sf_lift1 s1)++(map g_at_sf_lift2 s2) ∧
generates g1 s1 ∧ generates g2 s2.
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Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Union (orretness)

Considering that g3 is the union of g1 and g2 and S3, S1 and S2 are,

respetively, the start symbols of g3, g1 and g2):

∀g1, g2, s1, s2, (S1 ⇒
∗

g1
s1 → S3 ⇒

∗

g3
s1) ∧ (S2 ⇒

∗

g2
s2 → S3 ⇒

∗

g3
s2)
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Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Union (orretness)

Theorem g_uni_orret:

∀ g1: fg non_terminal_1 terminal,

∀ g2: fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
(generates g1 s1 → generates (g_uni g1 g2) (map g_uni_sf_lift1 s1))

∧
(generates g2 s2 → generates (g_uni g1 g2) (map g_uni_sf_lift2 s2)).
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Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Union (ompleteness)

∀s3, (S3 ⇒
∗

g3
s3)→ (S1 ⇒

∗

g1
s3) ∨ (S2 ⇒

∗

g2
s3)

Theorem g_uni_orret_inv:

∀ g1: fg non_terminal_1 terminal,

∀ g2: fg non_terminal_2 terminal,

∀ s: sfu,

generates (g_uni g1 g2) s →
(s=[inl (start_symbol (g_uni g1 g2))℄) ∨
(∃ s1: sf1, (s=(map g_uni_sf_lift1 s1) ∧ generates g1 s1)) ∨
(∃ s2: sf2, (s=(map g_uni_sf_lift2 s2) ∧ generates g2 s2)).
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Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Kleene star (orretness)

Considering that g2 is the Kleene star of g1 and S2 and S1 are, respetively,

the start symbols of g2 and g1):

∀g1, s1, s2, (S2 ⇒
∗

g2
ǫ) ∧ ((S2 ⇒

∗

g2
s2) ∧ (S1 ⇒

∗

g1
s1)→ S2 ⇒

∗

g2
s2 · s1)
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Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Kleene star (orretness)

Theorem g_lo_orret:

∀ g: fg non_terminal terminal,

∀ s: sf,

∀ s': sf,

generates (g_lo g) nil ∧ (generates (g_lo g) s' ∧ generates g s →
generates (g_lo g) (s'++ map g_lo_sf_lift s)).
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Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Kleene star (ompleteness)

∀s2, (S2 ⇒
∗

g2
s2)→ (s2 = ǫ)∨

(∃ s1, s
′

2 | (s2 = s′2 · s1) ∧ (S2 ⇒
∗

g2
s′2) ∧ (S1 ⇒

∗

g1
s1))

Theorem g_lo_orret_inv:

∀ g: fg non_terminal terminal,

∀ s: sf,

generates (g_lo g) s →
(s=[℄) ∨
(s=[inl (start_symbol (g_lo g))℄) ∨
(∃ s': sf,

∃ s'': sf,

generates (g_lo g) s' ∧ generates g s'' ∧ s=s' ++map g_lo_sf_lift s'').

Marus Ramos (UFPE) Language Formalization January 18th, 2016 83 / 207



Formalization of Context-Free Language Theory

Closure Properties

Corretness and Completeness

Proof strategy

Indution over the prediate derives or one of its variants.
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Formalization of Context-Free Language Theory

Closure Properties

Closure over Languages

De�nitions

Indutive l_uni (terminal : Type) (l1 l2: lang terminal):

lang terminal:=

| l_uni_l1: ∀ s: sentene, l1 s → l_uni l1 l2 s

| l_uni_l2: ∀ s: sentene, l2 s → l_uni l1 l2 s.

Indutive l_at (terminal : Type) (l1 l2: lang terminal):

lang terminal:=

| l_at_app: ∀ s1 s2: sentene, l1 s1 → l2 s2 → l_at l1 l2 (s1 ++s2).

Indutive l_lo (terminal : Type) (l: lang terminal):

lang terminal:=

| l_lo_nil: l_lo l [℄

| l_lo_app: ∀ s1 s2: sentene, (l_lo l) s1 → l s2 → l_lo l (s1 ++s2).
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Formalization of Context-Free Language Theory

Closure Properties

Closure over Languages

Proof strategy

◮
Corretness and ompleteness of union, onatenation and Kleene

star: trivial from de�nitions;

◮
Non-trivial for l_uni, l_at and l_lo being ontext-free languages:

use the de�nition of CFL, �nd orresponding CFGs and use previous

results.
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Formalization of Context-Free Language Theory

Closure Properties

Closure over Languages

Theorem l_uni_is_fl:

∀ l1 l2: lang terminal,

fl l1 → fl l2 → fl (l_uni l1 l2).

Theorem l_at_is_fl:

∀ l1 l2: lang terminal,

fl l1 → fl l2 → fl (l_at l1 l2).

Theorem l_lo_is_fl:

∀ l: lang terminal,

fl l → fl (l_lo l).
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Construt an equivalent grammar, free of:

1

Empty rules;

2

Unit rules;

3

Useless symbols;

4

Inaessible symbols.

For all G, if G is non-empty, then there exists G′
suh that L(G) = L(G′)

and G′
has no empty rules (exept for one, if G generates the empty

string), no unit rules, no useless symbols, no inaessible symbols and the

start symbol of G′
does not appear on the right-hand side of any other rule

of G′
.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rule

An empty rule r ∈ P is a rule whose right-hand side β is empty (e.g.

X → ǫ). We formalize that for all G, there exists G′
suh that

L(G) = L(G′) and G′
has no empty rules, exept for a single rule S → ǫ if

ǫ ∈ L(G); in this ase, S (the initial symbol of G′
) does not appear on the

right-hand side of any rule of G′
.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Nullable symbol:

Definition empty

(g: fg terminal _) (s: non_terminal + terminal): Prop:=

derives g [s℄ [℄.

Marus Ramos (UFPE) Language Formalization January 18th, 2016 90 / 207



Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Strategy for g1:

1

Construt g2 (using g1) suh that L(g2) = L(g1)− ǫ;
2

Construt g3 (using g2) suh that:

◮ L(g3) = L(g1) ∪ {ǫ} if ǫ ∈ L(g1) or
◮ L(g3) = L(g1) if ǫ /∈ L(g1).
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Step 1:

◮
For the new set of non-terminals:

◮
All the non-terminals of g1;

◮
A fresh new non-terminal symbol (S2).

◮
For the new set of rules:

◮
All non-empty rules of g1;

◮
All rules of g1 with every ombination on nullable symbols in the

right-hand side removed, exept if empty;

◮
One new rule: S2 → S1.

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The new non-terminal (S2) as the start symbol.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Indutive non_terminal': Type:=

| Lift_nt: non_terminal→ non_terminal'

| New_ss.

Notation sf' := (list (non_terminal' + terminal)).

Definition symbol_lift

(s: non_terminal + terminal): non_terminal' + terminal:=

math s with

| inr t ⇒ inr t

| inl n ⇒ inl (Lift_nt n)

end.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Indutive g_emp_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: non_terminal' → sf' → Prop :=

| Lift_diret :

∀ left: non_terminal,
∀ right: sf,
right 6= [℄ → rules g left right →
g_emp_rules g (Lift_nt left) (map symbol_lift right)
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

| Lift_indiret:

∀ left: non_terminal,
∀ right: sf,
g_emp_rules g (Lift_nt left) (map symbol_lift right)→
∀ s1 s2: sf,

∀ s: non_terminal,

right = s1 ++(inl s) :: s2 →
empty g (inl s) →
s1 ++s2 6= [℄ →
g_emp_rules g (Lift_nt left) (map symbol_lift (s1 ++s2))
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

| Lift_start_emp:

g_emp_rules g New_ss [inl (Lift_nt (start_symbol g))℄.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Definition g_emp

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal' terminal :=

{| start_symbol:= New_ss;

rules:= g_emp_rules g;

rules_finite:= g_emp_finite g |}.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Suppose, for example, that X,A,B,C are non-terminals, of whih A,B
and C are nullable, a, b and c are terminals and X → aAbBcC is a rule of

g. Then, the above de�nitions assert that X → aAbBcC is a rule of

g_emp g, and also:

◮ X → aAbBc;

◮ X → abBcC;

◮ X → aAbcC;

◮ X → aAbc;

◮ X → abBc;

◮ X → abcC;

◮ X → abc.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Step 2:

◮
For the new set of non-terminals:

◮
All the non-terminals of Step 1.

◮
For the new set of rules:

◮
All the rules of Step 1;

◮
One new rule: S2 → ǫ if ǫ ∈ L(g1).

◮
For the new grammar:

◮
The same set of non-terminals;

◮
The new set of rules;

◮
The same start symbol (S2).
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Indutive g_emp'_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: non_terminal' non_terminal→ sf' → Prop :=

| Lift_all:

∀ left: non_terminal' _,
∀ right: sf',
rules (g_emp g) left right → g_emp'_rules g left right

| Lift_empty:

empty g (inl (start_symbol g)) →
g_emp'_rules g (start_symbol (g_emp g)) [℄.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Definition g_emp'

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: fg (non_terminal' _) terminal :=

{| start_symbol:= New_ss _;

rules:= g_emp'_rules g;

rules_finite:= g_emp'_finite g |}.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Theorem g_emp'_orret:

∀ g: fg non_terminal terminal,

g_equiv (g_emp' g) g ∧
(produes_empty g → has_one_empty_rule (g_emp' g)) ∧
(∼ produes_empty g → has_no_empty_rules (g_emp' g)) ∧
start_symbol_not_in_rhs (g_emp' g).

Marus Ramos (UFPE) Language Formalization January 18th, 2016 102 / 207



Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

Definition has_one_empty_rule (g: fg non_terminal terminal): Prop:=

∀ left: non_terminal,
∀ right: sf,
rules g left right →
((left = start_symbol g) ∧ (right = [℄) ∨ right 6= [℄).

Definition has_no_empty_rules (g: fg non_terminal terminal): Prop:=

∀ left: non_terminal,
∀ right: sf,
rules g left right → right 6= [℄.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Empty rules elimination

The de�nition of g_equiv, when applied to this theorem, yields:

∀ s: sentene,

produes (g_emp' g) s ↔ produes g s.

For the → part, the strategy used was to prove that for every rule

left→g_emp′ right, either left→g right is a rule of g or left⇒∗

g right.
For the ← part, the strategy was more ompliated, and involves indution

over the number of derivation steps in g.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Unit rule

A unit rule r ∈ P is a rule whose right-hand side β ontains a single

non-terminal symbol (e.g. X → Y ). We formalize that for all G, there

exists G′
suh that L(G) = L(G′) and G′

has no unit rules.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Unit rules elimination

Indutive unit

(terminal non_terminal : Type)

(g: fg terminal non_terminal)

(a: non_terminal)

: non_terminal→ Prop:=

| unit_rule:

∀ (b: non_terminal),

rules g a [inl b℄ → unit g a b

| unit_trans:

∀ b : non_terminal,

unit g a b → unit g b  → unit g a .
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Unit rules elimination

For g1:

◮
For the new set of non-terminals:

◮
All the non-terminals of g1.

◮
For the new set of rules:

◮
All non-unit rules of g1;

◮
New rules: one for eah a, b, right suh that (i) unit a b, (ii)

b→ right, (iii) right is not a single non-terminal; the new rule

beomes a→ right.

◮
For the new grammar:

◮
The same set of non-terminals;

◮
The new set of rules;

◮
The same start symbol (S1).
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Unit rules elimination

Indutive g_unit_rules

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_diret' :

∀ left: non_terminal,
∀ right: sf,
(∀ r: non_terminal, right 6= [inl r℄) →
rules g left right →
g_unit_rules g left right

Marus Ramos (UFPE) Language Formalization January 18th, 2016 108 / 207



Formalization of Context-Free Language Theory

Grammar Simpli�ation

Unit rules elimination

| Lift_indiret':

∀ a b: non_terminal,

unit g a b →
∀ right: sf,
rules g b right →
(∀ : non_terminal, right 6= [inl ℄) →
g_unit_rules g a right.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Unit rules elimination

Definition g_unit

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_unit_rules g;

rules_finite:= g_unit_finite g |}.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Unit rules elimination

As an example, onsider the grammar G = (S,X, Y, Z, a, b, c, a, b, c, P, S),
with P ontaining the following rules:

S → X | ab

X → Y | bc

Y → Z | ac

Z → abc

The above de�nitions assert that the new grammar G′
(the grammar that

is equivalent to G and is free of unit rules) has the following rules:

S → abc | ac | bc | ab

X → abc | ac | bc

Y → abc | ac

Z → abc
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Unit rules elimination

Theorem g_unit_orret:

∀ g: fg non_terminal terminal,

g_equiv (g_unit g) g ∧ has_no_unit_rules (g_unit g).

The prediate has_no_unit_rules states that the argument grammar has

no unit rules at all:

Definition has_no_unit_rules (g: fg non_terminal terminal): Prop:=

∀ left n: non_terminal,

∀ right: sf,
rules g left right → right 6= [inl n℄.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Unit rules elimination

For the → part of the g_equiv (g_unit g) g proof, the strategy adopted

was to prove that for every rule left→g_unit right of (g_unit g), either

left→g right is a rule of g or left⇒∗

g right. For the ← part, the

strategy was more ompliated, and involves indution over a prediate

that is equivalent to derives (derives3), but generates the sentene

diretly without onsidering the appliation of a sequene of rules, whih

allows one to abstrat the appliation of unit rules in g.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Useless symbol

A symbol s ∈ V is useful if it is possible to derive a string of terminal

symbols from it using the rules of the grammar. Otherwise, s is alled an

useless symbol. A useful symbol s is one suh that s⇒∗ ω, with ω ∈ Σ∗
.

Naturally, this de�nition onerns mainly non-terminals, as terminals are

trivially useful. We formalize that, for all G suh that L(G) 6= ∅, there
exists G′

suh that L(G) = L(G′) and G′
has no useless symbols.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Useless symbol elimination

Definition useful

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

math s with

| inr t ⇒ True

| inl n ⇒ ∃ s: sentene, derives g [inl n℄ (map term_lift s)

end.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Useless symbol elimination

For g1:

◮
For the new set of non-terminals:

◮
All the non-terminals of g1.

◮
For the new set of rules:

◮
All rules of g1, exept those that have useless symbols.

◮
For the new grammar:

◮
The same set of non-terminals;

◮
The new set of rules;

◮
The same start symbol (S1, whih must be useful).
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Useless symbol elimination

Indutive g_use_rules

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_use :

∀ left: non_terminal,
∀ right: sf,
rules g left right →
useful g (inl left) →
(∀ s: non_terminal + terminal, In s right → useful g s) →
g_use_rules g left right.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Useless symbol elimination

Definition g_use

(terminal non_terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal terminal:=

{| start_symbol:= start_symbol g;

rules:= g_use_rules g;

rules_finite:= g_use_finite g |}.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Useless symbol elimination

As an example, onsider grammar G = (X,X, Y, Z, a, b, c, a, b, c, P, S),
with P ontaining the following rules:

S → Xa | Y a | Za

X → aX | bY

Y → aY | bX

Z → bZ | c

Clearly, symbols X and Y are useless symbols and an thus be removed

from G, resulting in G′
with the following set of rules:

S → Za

Z → bZ | c
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Useless symbol elimination

Theorem g_use_orret:

∀ g: fg non_terminal terminal,

non_empty g → g_equiv (g_use g) g ∧ has_no_useless_symbols (g_use g).

Definition non_empty (g: fg non_terminal terminal):

Prop:=

useful g (inl (start_symbol g)).

Definition has_no_useless_symbols (g: fg non_terminal terminal):

Prop:=

∀ n: non_terminal, appears g (inl n) → useful g (inl n).
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Useless symbol elimination

◮
Hypothesis non_empty g on lemma g_use_orret is neessary in

order to assure that the new grammar will have a start symbol (the

start symbol should be a useful symbol, otherwise it would not be

possible to obtain a new grammar free of useless symbols).

◮
The → part of the g_equiv proof is straightforward, sine every rule

of g_use is also a rule of g. For the onverse, it is neessary to show

that every symbol used a the derivation of g is useful, and thus the

rules used in this derivation also appear in g_use.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Inaessible symbol

A symbol s ∈ V is aessible if it is part of at least one string generated

from the root symbol of the grammar. Otherwise, it is alled an

inaessible symbol. An aessible symbol s is one suh that S ⇒∗ αsβ,
with α, β ∈ V ∗

. We formalize that for all G, there exists G′
suh that

L(G) = L(G′) and G′
has no inaessible symbols.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Inaessible symbol elimination

Definition aessible

(terminal non_terminal : Type)

(g : fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

∃ s1 s2: sf, derives g [inl (start_symbol g)℄ (s1++s::s2).
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Inaessible symbol elimination

For g1:

◮
For the new set of non-terminals:

◮
All the non-terminals of g1.

◮
For the new set of rules:

◮
All rules of g1, exept those that have inaessible symbols.

◮
For the new grammar:

◮
The same set of non-terminals;

◮
The new set of rules;

◮
The same start symbol (S1).
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Inaessible symbol elimination

Indutive g_a_rules

(terminal non_terminal : Type)

(g : fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_a : ∀ left: non_terminal,
∀ right: sf,
rules g left right → aessible g (inl left) →
g_a_rules g left right.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Inaessible symbol elimination

Definition g_a

(terminal non_terminal : Type)

(g : fg non_terminal terminal)

: fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_a_rules g;

rules_finite:= g_a_finite g |}.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Inaessible symbol elimination

As an example, onsider grammar G = (X,X, Y, Z, a, b, c, a, b, c, P, S),
with P ontaining the following rules:

S → aX | bX

X → aX | bX | a | b

Y → cZ | a

Z → cZ | b

Clearly, symbols Y , Z and c are inaessible symbols and an thus be

removed from G, resulting in G′
with the following set of rules:

S → aX | bX

X → aX | bX | a | b
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Inaessible symbol elimination

Theorem g_a_orret:

∀ g: fg non_terminal terminal,

g_equiv (g_a g) g ∧ has_no_inaessible_symbols (g_a g).

Definition has_no_inaessible_symbols (g: fg non_terminal terminal): Prop:=

∀ s: (non_terminal + terminal), appears g s → aessible g s.

The → part of the g_equiv proof is also straightforward, sine every rule

of g_a is also a rule of g. For the onverse, it is neessary to show that

every symbol used in the derivation of g is aessible, and thus the rules

used in this derivation also appear in g_a.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Uni�ation

Theorem g_simpl:

∀ g: fg non_terminal terminal,

non_empty g →
∃ g': fg (non_terminal' non_terminal) terminal,

g_equiv g' g ∧
has_no_inaessible_symbols g' ∧
has_no_useless_symbols g' ∧
(produes_empty g → has_one_empty_rule g') ∧
(∼ produes_empty g → has_no_empty_rules g') ∧
has_no_unit_rules g' ∧
start_symbol_not_in_rhs g'.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Uni�ation

Definition start_symbol_not_in_rhs (g: fg non_terminal terminal):=

∀ left: non_terminal,
∀ right: sf,
rules g left right → ∼ In (inl (start_symbol g)) right.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Uni�ation
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Formalization of Context-Free Language Theory

Chomsky Normal Form

De�nition

∀ G = (V,Σ, P, S), ∃ G′ = (V ′,Σ, P ′, S′) |

L(G) = L(G′) ∧ ∀ (α→G′ β) ∈ P ′, (β ∈ Σ) ∨ (β ∈ N ·N)

Valid only if G does not generate the empty string. If this is the ase, then

the grammar that has this format, plus a single rule S′ → ǫ, is also
onsidered to be in the Chomsky Normal Form, and generates the original

language, inluding the empty string.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Strategy

1

For every terminal symbol σ that appears in the right-hand side of a

rule r = α→G β1 · σ · β2 of G, reate a new non-terminal symbol [σ],
a new rule [σ]→G′ σ and substitute σ for [σ] in r;

2

For every rule r = α→G N1N2 · · ·Nk of G, where Ni are all

non-terminals, reate a new set of non-terminals and a new set of

rules suh that:

α →G′ N1[N2 · · ·Nk],

[N2 · · ·Nk] →G′ N2[N3 · · ·Nk],

· · ·

[Nk−2Nk−1Nk] →G′ Nk−2[Nk−1Nk],

[Nk−1Nk] →G′ Nk−1Nk
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Example

As an example, onsider G = ({S′,X, Y, Z, a, b, c}, {a, b, c}, P, S′) with P
equal to:

{S′ → XY Zd,

X → a,

Y → b,

Z → c, }
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Example

The CNF grammar G′
, equivalent to G, would then be the one with the

following set of rules:

{S′ → X[Y Zd],

[Y Zd] → Y [Zd],

[Zd] → Z[d],

[d] → d,

X → a,

Y → b,

Z → c, }
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Chomsky Normal Form

Strategy for g1:

1

Construt g2 (using g1) suh that L(g2) = L(g1)− ǫ;

2

Construt g3 (using g1) suh that L(g3) = L(g2) ∪ {ǫ}.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Chomsky Normal Form

From g1 to g2:

◮
For the new set of non-terminals:

◮
One for every possibile (non-empty) sequene of terminal and

non-terminal symbols of g1: [...]

◮
For the new set of rules:

◮
One for every terminal symbol t of g1: [t]→ t;

◮
One for every rule X → t of g1: [X ]→ t;

◮
One for every rule left→ s1s2β of g1: [left]→ [s1][s2β];

◮
One for every rule [left]→ [s1][s2s3β] of g2: [s2s3β]→ [s2][s3β]

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The mapped start symbol ([S1]).
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Indutive non_terminal' (non_terminal terminal : Type): Type:=

| Lift_r: sf → non_terminal'.

Notation sf':= (list (non_terminal' + terminal)).

Notation term_lift:= ((terminal_lift non_terminal) terminal).

Definition symbol_lift (s: non_terminal + terminal)

: non_terminal' + terminal:=

math s with

| inr t ⇒ inr t

| inl n ⇒ inl (Lift_r [inl n℄)

end.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Indutive g_nf_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_nf_t:

∀ t: terminal,

∀ left: non_terminal,
∀ s1 s2: sf,

rules g left (s1++[inr t℄++s2) →
g_nf_rules g (Lift_r [inr t℄) [inr t℄
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Formalization of Context-Free Language Theory

Chomsky Normal Form

| Lift_nf_1:

∀ left: non_terminal,
∀ t: terminal,

rules g left [inr t℄ →
g_nf_rules g (Lift_r [inl left℄) [inr t℄
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Formalization of Context-Free Language Theory

Chomsky Normal Form

| Lift_nf_2:

∀ left: non_terminal,
∀ s1 s2: symbol,

∀ beta: sf,
rules g left (s1 :: s2 :: beta) →
g_nf_rules g (Lift_r [inl left℄)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: beta))℄
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Formalization of Context-Free Language Theory

Chomsky Normal Form

| Lift_nf_3:

∀ left: sf,
∀ s1 s2 s3: symbol,

∀ beta: sf,
g_nf_rules g (Lift_r left)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: s3 :: beta))℄ →
g_nf_rules g (Lift_r (s2 :: s3 :: beta))

[inl (Lift_r [s2℄); inl (Lift_r (s3 :: beta))℄.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition g_nf

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal' terminal :=

{| start_symbol:= Lift_r [inl (start_symbol g)℄;

rules:= g_nf_rules g;

rules_finite:= g_nf_finite g |}.
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Formalization of Context-Free Language Theory

Grammar Simpli�ation

Chomsky Normal Form

From g1 to g3:

◮
For the new set of non-terminals:

◮
The same of g2.

◮
For the new set of rules:

◮
The same of g2;

◮
One extra rule: [S1]→ ǫ

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The mapped start symbol ([S1]).
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Indutive g_nf'_rules

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_nf'_all:

∀ left: non_terminal',
∀ right: sf',
g_nf_rules g left right →
g_nf'_rules g left right

| Lift_nf'_new:

g_nf'_rules g (start_symbol (g_nf g)) [℄.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition g_nf'

(non_terminal terminal : Type)

(g: fg non_terminal terminal)

: fg non_terminal' terminal:=

{| start_symbol:= start_symbol (g_nf g);

rules:= g_nf'_rules g;

rules_finite:= g_nf'_finite g |}.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Theorem g_nf_final:

∀ g: fg non_terminal terminal,

(produes_empty g ∨ ∼ produes_empty g) ∧
(produes_non_empty g ∨ ∼ produes_non_empty g) →
∃ g': fg non_terminal' terminal,

g_equiv g' g ∧
(is_nf g' ∨ is_nf_with_empty_rule g').
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition is_nf_rule (left: non_terminal) (right: sf): Prop:=

(∃ s1 s2: non_terminal, right = [inl s1; inl s2℄) ∨
(∃ t: terminal, right = [inr t℄).

Definition is_nf (g: fg non_terminal terminal): Prop:=

∀ left: non_terminal,
∀ right: sf,
rules g left right → is_nf_rule left right.

Definition is_nf_with_empty_rule (g: fg non_terminal terminal):

Prop:=

∀ left: non_terminal,
∀ right: sf,
rules g left right →
(left = (start_symbol g) ∧ right = [℄) ∨
is_nf_rule left right.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

◮
The proof of this theorem requires that the original grammar is �rst

simpli�ed aording to the results disussed before;

◮
For the ← part of g_equiv, the strategy adopted was to prove that

for every rule left→ right of (g), either left→ right is a rule of

g_nf g or left⇒∗ right in g_nf g.

◮
For the → part, that is, (s1 ⇒

∗

g_cnfg s2)→ (s1 ⇒
∗

g s2), it was

enough to note that the sentential forms of g are embedded in the

sentential forms of g_nf g, spei�ally in the arguments of the

onstrutor Lift_r of non_terminal'. Thus, a simple extration

mehanism allows the impliation to be proved by indution on the

struture of the sentential form s1.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Example

Using the previous example, suppose we have: X[Y Zd]⇒∗

g_cnfg abcd,

whih would be represented in our formalization as:

derives (g_nf g) [inl X℄ ++[inl (Lift_r ([inl Y; inl Z; inr d℄))℄

(map (·symbol_lift _ _) (map term_lift [inr a; inr b; inr ; inr d℄))

The extration mehanism, applied to this ase, would yield:

derives g [inl X; inl Y; inl Z; inr d℄

(map term_lift [inr a; inr b; inr ; inr d℄)

whih is exatly the expeted result (XY Zd⇒∗

g abcd).
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

General results on binary trees and their relation to CNF grammars:

◮
4,539 lines of Coq sript,

∼
18.9% of the total;

◮
84 lemmas;

◮
Supports the formalization of the Pumping Lemma.

◮
Based on the de�nition of btree.
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Indutive btree (non_terminal terminal: Type): Type:=

| bnode_1: non_terminal→ terminal→ btree

| bnode_2: non_terminal→ btree → btree → btree.
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Definition broot (t: btree): non_terminal:=

math t with

| bnode_1 n t ⇒ n

| bnode_2 n t1 t2 ⇒ n

end.

Fixpoint bfrontier (t: btree): sentene:=

math t with

| bnode_1 n t ⇒ [t℄

| bnode_2 n t1 t2 ⇒ bfrontier t1 ++bfrontier t2

end.

Fixpoint bheight (t: btree): nat:=

math t with

| bnode_1 n t ⇒ 1

| bnode_2 n t1 t2 ⇒ S (max (bheight t1) (bheight t2))

end.
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Lemma length_bfrontier_ge:

∀ t: btree,

∀ i: nat,

length (bfrontier t) ≥ 2 ^ (i − 1) →
bheight t ≥ i.
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Indutive subtree (t: btree): btree → Prop:=

| sub_br: ∀ tl tr: btree, ∀ n: non_terminal,

t = bnode_2 n tl tr →
subtree t tr

| sub_bl: ∀ tl tr: btree, ∀ n: non_terminal,

t = bnode_2 n tl tr →
subtree t tl

| sub_ir: ∀ tl tr t': btree, ∀ n: non_terminal,

subtree tr t' →
t = bnode_2 n tl tr →
subtree t t'

| sub_il: ∀ tl tr t': btree, ∀ n: non_terminal,

subtree tl t' →
t = bnode_2 n tl tr →
subtree t t'.
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Lemma subtree_trans:

∀ t1 t2 t3: btree,

subtree t1 t2 →
subtree t2 t3 →
subtree t1 t3.

Lemma subtree_inludes:

∀ t1 t2: btree,

subtree t1 t2 →
∃ l r : sentene,

bfrontier t1 = l ++bfrontier t2 ++r ∧ (l 6= [℄ ∨ r 6= [℄).
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Indutive bpath (bt: btree): sf → Prop:=

| bp_1: ∀ n: non_terminal,

∀ t: terminal,

bt = (bnode_1 n t) → bpath bt [inl n; inr t℄

| bp_l: ∀ n: non_terminal,

∀ bt1 bt2: btree,

∀ p1: sf,
bt = bnode_2 n bt1 bt2 → bpath bt1 p1 → bpath bt ((inl n) :: p1)

| bp_r: ∀ n: non_terminal,

∀ bt1 bt2: btree,

∀ p2: sf,
bt = bnode_2 n bt1 bt2 → bpath bt2 p2 → bpath bt ((inl n) :: p2).
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Lemma btree_ex_bpath:

∀ bt: btree,
∀ ntl: list non_terminal,

bheight bt ≥ length ntl + 1 →
bnts bt ntl →
∃ z: sf,

bpath bt z ∧
length z = bheight bt + 1 ∧
∃ u r: sf,

∃ t: terminal,

z = u ++r ++[inr t℄ ∧
length u ≥ 0 ∧
length r = length ntl + 1 ∧
(∀ s: symbol, In s (u ++r) → In s (map inl ntl)).
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Indutive bnts (bt: btree) (ntl: list non_terminal): Prop:=

| bn_1: ∀ n: non_terminal,

∀ t: terminal,

bt = (bnode_1 n t) → In n ntl → bnts bt ntl

| bn_2: ∀ n: non_terminal,

∀ bt1 bt2: btree,

bt = bnode_2 n bt1 bt2 →
In n ntl →
bnts bt1 ntl →
bnts bt2 ntl →
bnts bt ntl.

Marus Ramos (UFPE) Language Formalization January 18th, 2016 159 / 207



Formalization of Context-Free Language Theory

Generi Binary Trees Library

Indutive bode (bt: btree): list bool → Prop:=

| bode_0: ∀ n: non_terminal,
∀ t: terminal,

bt = (bnode_1 n t) → bode bt [℄

| bode_1: ∀ n: non_terminal,
∀ bt1 bt2: btree,

∀ 1: list bool,

bt = bnode_2 n bt1 bt2 → bode bt1 1 → bode bt (false :: 1)

| bode_2: ∀ n: non_terminal,
∀ bt1 bt2: btree,

∀ 2: list bool,

bt = bnode_2 n bt1 bt2 → bode bt2 2 → bode bt (true :: 2).
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Lemma bpath_ex_bode:

∀ t: btree,

∀ p: sf,

bpath t p →
∃ : list bool,

bode t  ∧
bpath_bode t p .
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Indutive bpath_bode (bt: btree): sf → (list bool) → Prop:=

| bb_0: ∀ n: non_terminal, ∀ t: terminal,
bt = (bnode_1 n t) → bpath_bode bt [inl n; inr t℄ [℄

| bb_1: ∀ n: non_terminal, ∀ bt1 bt2: btree,

∀ 1: list bool, ∀ p1: sf,
bt = (bnode_2 n bt1 bt2) →
bpath bt1 p1 →
bpath_bode bt1 p1 1 →
bpath_bode bt ((inl n) :: p1) (false :: 1)

| bb_2: ∀ n: non_terminal, ∀ bt1 bt2: btree,

∀ 2: list bool, ∀ p2: sf,
bt = (bnode_2 n bt1 bt2) →
bpath bt2 p2 →
bpath_bode bt2 p2 2 →
bpath_bode bt ((inl n) :: p2) (true :: 2).
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Lemma bode_split:

∀ t: btree,

∀ p1 p2: sf,

∀ : list bool,

bpath_bode t (p1 ++p2)  →
length p1 > 0 →
length p2 > 1 →
bheight t = length p1 + length p2 − 1 →
∃ 1 2: list bool,

 = 1 ++2 ∧
length 1 = length p1 ∧
∃ t2: btree,
∃ x y: sentene,

bpath_bode t2 p2 2 ∧
btree_deompose t 1 = Some (x, t2, y) ∧
bheight t2 = length p2 − 1.
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Fixpoint btree_deompose (bt: btree) (: list bool):

option (sentene * btree * sentene):= ...

Fixpoint btree_subst (t1 t2: btree) (: list bool):

option btree:= ...
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Indutive btree_nf (g: fg non_terminal' terminal)

(bt: btree non_terminal' terminal): Prop:=

| bt_1: ∀ n: non_terminal',

∀ t: terminal,

rules g n [inr t℄ →
bt = (bnode_1 n t) →
btree_nf g bt

| bt_2: ∀ n n1 n2: non_terminal',

∀ bt1 bt2: btree _ _,

rules g n [inl n1; inl n2℄ →
btree_nf g bt1 →
broot bt1 = n1 →
btree_nf g bt2 →
broot bt2 = n2 →
bt = (bnode_2 n bt1 bt2) →
btree_nf g bt.
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Lemma derives_g_nf_equiv_btree:

∀ g: fg non_terminal' terminal,

∀ n: non_terminal',

∀ s: sentene,

s 6= [℄ →
(is_nf g ∨ is_nf_with_empty_rule g) →
start_symbol_not_in_rhs g →
derives g [inl n℄ (map term_lift' s) →
∃ t: btree non_terminal' terminal,

btree_nf g t ∧
broot t = n ∧
bfrontier t = s.
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Formalization of Context-Free Language Theory

Generi Binary Trees Library

Lemma btree_equiv_derives_g_nf:

∀ g: fg _ _,

∀ t: btree _ _,

btree_nf g t →
derives g [inl (broot t)℄ (map inr (bfrontier t)).
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Formalization of Context-Free Language Theory

Pumping Lemma

∀ L, (� L)→ ∃ n |

∀ α, (α ∈ L) ∧ (|α| ≥ n)→

∃ u, v, w, x, y ∈ Σ∗ | (α = uvwxy) ∧ (|vx| ≥ 1) ∧ (|vwx| ≤ n)∧

∀ i, uviwxiy ∈ L
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

1

Sine L is delared to be a ontext-free language (prediate fl),

then there exists a ontext-free grammar G suh that L(G) = L;

2

Obtain G′
suh that G′

is in Chomsky Normal Form and

L(G′) = L(G);

3

Take n as 2k, where k is the number of non-terminal symbols in G′
;

4

Consider an arbitrary sentene α suh that α ∈ L and |α| ≥ n;

5

Obtain a derivation tree t that represents the derivation of α in G′
;

6

Take a path that starts in the root of t and whose length is the height

of t plus 1 (maximum length);

7

Then, the height of t should be greater or equal than k + 1;

8

This means that the seleted path has at least k+ 2 symbols, being at

least k + 1 non-terminals and one (the last) a terminal symbol;
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

9

Sine G′
has only k non-terminal symbols, this means that this path

has at least one non-terminal symbol that appears at least two times

in it;

10

Name the dupliated symbols n1 and n2 (n1 = n2) and the

orresponding subtrees t1 and t2 (note that t2 is a subtree of t1 and t1
is a subtree of t);

11

It is then possible to prove that the height of t1 is greater than or

equal to 2, and less than or equal to 2k;

12

Also, that the height of t2 is greater than or equal to 1 and less than

or equal to 2k−1
;

13

This implies that the frontier of t an be split into �ve parts:

u, v, w, x, y, where w is the frontier of t2 and vwx is the frontier of t1;
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

14

As a onsequene of the heights of the orresponding subtrees, it an

be shown that |vx| ≥ 1 and |vwx| ≤ n;

15

If t1 is removed from t, and t2 is inserted in its plae, then we have a

new tree t0 that represents the derivation of string uv0wx0y = uwy;

16

If, instead, t1 is inserted in the plae where t2 lies originally, then we

have a tree t2 that represents the derivation of string uv2wx2y;

17

Repetition of the previous step generates all trees ti that represent the
derivation of the string uviwxiy, ∀i ≥ 2.
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof
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Formalization of Context-Free Language Theory

Pumping Lemma

Lemma pumping_lemma:

∀ l: lang terminal,

(ontains_empty l ∨ ∼ ontains_empty l) ∧
(ontains_non_empty l ∨ ∼ ontains_non_empty l) →
fl l →
∃ n: nat,

∀ s: sentene,

l s →
length s ≥ n →
∃ u v w x y: sentene,

s = u ++v ++w ++x ++y ∧
length (v ++x) ≥ 1 ∧
length (u ++y) ≥ 1 ∧
length (v ++w ++x) ≤ n ∧
∀ i: nat, l (u ++(iter v i) ++w ++(iter x i) ++y).
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
Find a grammar G that generates the input language L (this is a

diret onsequene of the prediate is_fl and orresponds to step 1;

◮
Obtain a CNF grammar G′

that is equivalent to G (step 2), using

previous results;

◮ G is substituted for G′
and the value for n is de�ned as 2k (step 3)

where k is the length of the list of non-terminals of G′
(whih in turn

is obtained from the prediate rules_finite);
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
An arbitrary sentene α of L(G′) that satis�es the required minimum

length n is onsidered (step 4);

◮
Lemma derives_g_nf_equiv_btree is then applied in order to

obtain a btree t that represents the derivation of α in G′
(step 5).

Naturally we have to ensure that α 6= ǫ, whih is true sine by

assumption |α| ≥ 2k;

◮
Obtain a path (a sequene of non-terminal symbols ended by a

terminal symbol) that has maximum length, that is, whose length is

equal to the height of t plus 1 (steps 6 and 7). This is aomplished

by means of the de�nition bpath and the lemma btree_ex_bpath.
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

The length of this path (whih is ≥ k + 2) allows one to infer that it must

ontain at least one non-terminal symbol that appears at least twie in it

(steps 8, 9 and 10). This result omes from the appliation of the lemma

pigeon whih represents a list version of the well-known pigeonhole

priniple:

Lemma pigeon:

∀ A: Type,

∀ x y: list A,

(∀ e: A, In e x → In e y) →
length x = length y + 1→
∃ d: A,

∃ x1 x2 x3: list A,

x = x1 ++[d℄ ++x2 ++[d℄ ++x3.
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
Sine a path is not unique in a tree, it is neessary to use some some

other representation that an desribe this path uniquely, whih is

done by the prediate bode and the lemma bpath_ex_bode;

◮
One the path has been identi�ed with a repeated non-terminal

symbol, and a orresponding bode has been assigned to it, lemma

bode_split is applied twie in order to obtain the two subtrees t1
and t2 that are assoiated respetively to the �rst and seond repeated

non-terminals of t;
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
From this information it is then possible to extrat most of the results

needed to prove the goal (steps 11, 12, 13 and 14), exept for the

pumping ondition. This has been obtained by an auxiliary lemma

pumping_aux, whih takes as hypothesis the fat that a tree t1 (with

frontier vwx) has a subtree t2 (with frontier w), both with the same

roots, and asserts the existene of an in�nite number of new trees

obtained by repeated substitution of t2 by t1 or simply t1 by t2, with
respetively frontiers viwxi, i ≥ 1 and w, or simply viwxi, i ≥ 0.
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

Lemma pumping_aux:

∀ g: fg _ _,

∀ t1 t2: btree (non_terminal' non_terminal terminal) _,

∀ n: _, ∀ 1 2: list bool, ∀ v x: sentene,

btree_deompose t1 1 = Some (v, t2, x) →
btree_nf g t1 → broot t1 = n →
bode t1 (1 ++2) → 1 6= [℄ →
broot t2 = n → bode t2 2 →
(∀ i: nat,

∃ t': btree _ _,

btree_nf g t' ∧
broot t' = n ∧
btree_deompose t' (iter 1 i) = Some (iter v i, t2, iter x i) ∧
bode t' (iter 1 i ++2) ∧
get_nt_btree (iter 1 i) t' = Some n).
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
The proof ontinues by showing that eah of these new trees an be

ombined with tree t obtained before, thus representing strings

uviwxiy, i ≥ 0 as neessary (steps 15 and 16).

◮
Finally, we prove that eah of these trees is related to a derivation in

G′
, whih is aomplished by lemma btree_equiv_produes_g_nf

(step 17).

Marus Ramos (UFPE) Language Formalization January 18th, 2016 182 / 207



Formalization of Context-Free Language Theory

Pumping Lemma

Finite languages

If L is �nite, then the PL is trivially true:

◮
Suppose L is �nite;

◮
Let G in CNF suh that L = L(G);

◮
Let k be the number of non-terminals of G;

◮
We laim there is no w ∈ L suh that |w| ≥ 2k:

◮
If there is, then the PL asserts that L is i n�nite, whih ontradits the

hypothesis.

◮
Sine there is no w ∈ L suh that |w| ≥ 2k, then the PL is trivially

true.
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Formalization of Context-Free Language Theory

Summary

◮
23,985 lines of Coq sript spread in 18 libraries;

◮
Eight auxiliary libraries ontain 11,781 lines of Coq sript and

orrespond to almost half of the formalization (49.1%);

◮
Two of these auxiliary libraries (fg.v and trees.v) sum, alone,

8,932 lines or more than one third (37.2%) of the total;

◮
533 lemmas and theorems, 83 de�nitions and 40 indutive de�nitions

among 1,067 delared names;

◮
Created and ompiled with the Coq Proof Assistant, version 8.4pl4

(June 2014), using CoqIDE for Windows;

◮
Available for download at https://github.om/mvmramos/v1;

◮
Compiled with the following ommands under Cygwin:

◮
oq_makefile *.v > _makefile

◮
make -f _makefile

◮
make -f _makefile html
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Formalization of Context-Free Language Theory

Summary

Main lemmas

◮
Library homsky.v:

◮
g_nf_exists

◮
Library losure.v:

◮
l_lo_is_fl

◮
l_lo_orret

◮
l_lo_orret_inv

◮
Library onatenation.v:

◮
l_at_is_fl

◮
l_at_orret

◮
l_at_orret_inv

◮
Library emptyrules.v:

◮
g_emp_orret

◮
g_emp'_orret

◮
Library inaessible.v:

◮
g_a_orret
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Formalization of Context-Free Language Theory

Summary

Main lemmas

◮
Library pumping:

◮
pumping_lemma

◮
pumping_lemma_v2

◮
Library simpli�ation.v:

◮
g_simpl_exists_v1

◮
g_simpl_exists_v2

◮
Library union.v:

◮
l_uni_is_fl

◮
l_uni_orret

◮
l_uni_orret_inv

◮
Library unitrules.v:

◮
g_unit_orret

◮
Library useless.v:

◮
g_use_orret
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Formalization of Context-Free Language Theory

Disussion

Lessons

One needs to have a previous hands-on experiene in a real world

formalization projet of some omplexity and size, preferably in a

group willing to share its (supposedely) higher expertise and

experiene, before faing alone the hallenges of a similar projet.
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Formalization of Context-Free Language Theory

Disussion

Lessons

Formalization projets (as with any other projets) should ome

in inreasing size and omplexity, allowing the person (or team)

involved to be adequately prepared to ope with the new

hallenges.
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Formalization of Context-Free Language Theory

Disussion

Lessons

Avoid formalizing a theory that you are not familiar with, unless

you already master the proof assistant and have some experiene

with the formalization proess. Otherwise, stik to a well-know

theory and redue the risks involved.
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Formalization of Context-Free Language Theory

Disussion

Lessons

The formalization of any theory should start with the shortest,

simpler and more independent lemmas and theorems, and proeed

towards the largest and more omplex ones, bene�ting from

previous results.
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Formalization of Context-Free Language Theory

Disussion

Advies

◮
Make a deep review of the informal proof;

◮
Be sure of the statement to be proved;

◮
Use the ohesion and oupling priniples;

◮
Choose a naming poliy;

◮
Develop a writing style;

◮
Be prepared for lots of trial and error;

◮
Do not underestimate the importane of the indutive de�nitions;

◮
Get rid of useless ode.
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Formalization of Context-Free Language Theory

Disussion

This formalization

◮
Set versus Prop;

◮
Finiteness of the ontext-free grammar;

◮
Variants of indutive prediate de�nitions;

◮
Use of syntax trees in proofs;

◮
Statement and proof of the Pumping Lemma.
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Formalization of Context-Free Language Theory

Disussion

Pumping Lemma

∀ L, (� L)→ ∃ n |

∀ α, (α ∈ L) ∧ (|α| ≥ n)→

∃ u, v, w, x, y ∈ Σ∗ | (α = uvwxy) ∧ (|vx| ≥ 1) ∧ (|vwx| ≤ n)∧

∀ i, uviwxiy ∈ L
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Formalization of Context-Free Language Theory

Disussion

Pumping Lemma

∀ L, (� L)→ ∃ n |

∀ α, (α ∈ L) ∧ (|α| ≥ n)→

∃ u, v, w, x, y ∈ Σ∗ | (α = uvwxy)∧(|vx| ≥ 1)∧ (|uy| ≥ 1) ∧(|vwx| ≤ n)∧

∀ i, uviwxiy ∈ L
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Formalization of Context-Free Language Theory

Disussion

Pumping Lemma

A variant of the Pumping Lemma, using a smaller value of n, has also been

proved. This result uses n = 2k−1 + 1 instead of n = 2k (k is the number

of non-terminal symbols in the CNF grammar). Sine the proof needs a

binary tree of height at least k + 1 in order to proeed, and sine trees of

height i have as frontier strings of length maximum 2i−1
, it is possible to

onsider strings of length equal to or greater than 2k−1 + 1 (and not only

of length equal to or greater than 2k) in order to have the orresponding

binary tree with height equal to or higher than k+1. This way, two slightly

di�erent proofs of the Pumping Lemma have been produed: one with

n = 2k (pumping_lemma) and the other with n = 2k−1 + 1
(pumping_lemma_v2).

Marus Ramos (UFPE) Language Formalization January 18th, 2016 195 / 207



Formalization of Context-Free Language Theory

Disussion

Pumping Lemma

The statement of (pumping_lemma_v2) beomes:

∀ L, (� L)→ ∃ n |

∀ α, (α ∈ L) ∧ (|α| ≥ n)→

∃ u, v, w, x, y ∈ Σ∗ | (α = uvwxy) ∧ (|vx| ≥ 1) ∧ (|vwx| ≤ (n− 1) ∗ 2) ∧

∀ i, uviwxiy ∈ L
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Formalization of Context-Free Language Theory

Disussion

Comparison

Norrish & Barthwal Firsov & Uustalu Ramos

Proof assistant HOL4 Agda Coq

Closure X × X

Simpli�ation X empty and unit rules X

CNF X X X

GNF X × ×
PDA X × ×

PL X × X
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Conlusions and Further Work

Ahievements

◮
A set of libraries that formalizes an important subset of ontext-free

language theory;

◮
Expertise on interative theorem proving.

◮
Pioneering;

◮
Reasoning about ontext-free language theory;

◮
Learning and experimenting in an eduational environment;

◮
New projets and theories.
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Conlusions and Further Work

Contributions

Pioneering

◮
Bring formalization into an area whih has relied so far mostly in

informal arguments;

◮
First formalization of a oherent and omplete subset of ontext-free

language theory in the Coq proof assistant;

◮
Seond formalization ever (in any proof assistant) of the Pumping

Lemma for ontext-free languages;

◮
Seond most omprehensive formalization of an important subset of

the ontext-free language theory in any proof assistant.
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Conlusions and Further Work

Contributions

Reasoning about ontext-free language theory

◮
The present formalization an be very helpful to get insight into the

nature and behaviour of the objets of ontext-free language theory, as

well on the proofs of their properties;

◮
Also, when developing representations for new and similar devies, and

proofs for new results of the theory;

◮
Finally, the formalization represents the guarantee that the proofs are

orret and that the remaining errors in the informal demonstrations,

if any, ould �nally and de�nitely be reviewed and orreted.
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Conlusions and Further Work

Contributions

Learning and experimenting in an eduational environment

Teahers, students and professionals an use the formalization to learn and

experiment with the objets and onepts of ontext-free language theory

in a software laboratory, where further pratial observations and

developments ould be done independently. Also, the material ould be

deployed as the basis for a ourse on the theoretial foundations of

omputing, exploring simultaneously or independently:

◮
Language theory;

◮
Logi;

◮
Proof theory;

◮
Type theory;

◮
Models of omputation;

◮
Formal mathematis;

◮
Interative theorem provers and Coq.
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Conlusions and Further Work

Contributions

Expertise and knowledge

◮
The essene of formalization omes into light with the

aomplishment of this projet;

◮
This enables the appliation of similar priniples to the formalization

of other theories, and allow for the multipliation of the knowledge

among students and olleagues;

◮
Considering the growing interest in formalization in reent years, this

projet an be onsidered as a good tehnial preparation for dealing

with the hallenges of theory and omputer program developments of

the future.
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Conlusions and Further Work

Further Work

Various possibilities, onsidered in three di�erent groups:

◮
New devies and results;

◮
Code extration;

◮
General enhanements.
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Conlusions and Further Work

Further Work

New devies and results

◮
Pushdown automata, inluding: de�nition, equivalene of pushdown

automata and ontext-free grammars; equivalene of empty stak and

�nal state aeptane riteria; non-equivalene of the deterministi

and the non-deterministi models;

◮
Elimination of left reursion in ontext-free grammars and Greibah

Normal Form;

◮
Derivation trees, ambiguity and inherent ambiguity;

◮
Deidable problems for ontext-free languages (membership,

emptyness and �niteness for example);

◮
Odgen's Lemma.
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Conlusions and Further Work

Further Work

Code extration

◮
Add omputational ontent;

◮
Extrat erti�ed programs for:

◮
Closure properties;

◮
Grammar simpli�ation;

◮
CNF.

◮
Certi�ed parser generator.
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Conlusions and Further Work

Further Work

General enhanements

◮
Creating a naming poliy that an be used rename the various objets

and better identify their nature and intended use;

◮
Eliminating unneessary de�nitions and lemmas;

◮
Making a better grouping of related objets and thus a better

struturing of the whole formalization;

◮
Simplifying some proof sripts;
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Conlusions and Further Work

Further Work

General enhanements

◮
Commenting the sripts in order to provide a better understanding of

their nature.

◮
Substitution of the lassial logi proof of the pigeonhole priniple for

a onstrutive version;

◮
Rewriting of the ontents of the trees.v library, in order to allow that

all de�nitions and results be parametrized on any two types, one for

the leafs and the other for the internal nodes of a btree;

◮
Experimenting and rewriting in SSRe�et.
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