
Formalization of Context-Free Language Theory

Mar
us Viní
ius Midena Ramos

Ruy J. G. B. de Queiroz

(Supervisor)

UFPE

January 18th, 2016

mvmr�
in.ufpe.br

(10 de janeiro de 2016, 19:23)

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 1 / 207

1

Introdu
tion

2

A Sampler of Formally Che
ked Proje
ts

3

Related Work

4

Formalization of Context-Free Language Theory

5

Con
lusions and Further Work

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 2 / 207

Introdu
tion

Introdu
tion

Mathemati
al formalization

+

Context-free language theory

=

Formalization of
ontext-free language theory

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 3 / 207

Introdu
tion

Introdu
tion

Mathemati
al formalization

◮
Ma
hine assisted proof
onstru
tion;

◮
Ma
hine veri�ed proofs;

◮
Speed, reliability and reuse;

◮
Mathemati
s and
omputer s
ien
e;

◮
Intera
tive theorem proving;

◮
Certi�ed hardware and software development.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 4 / 207

Introdu
tion

Introdu
tion

Context-free language theory

◮
Language design, analysis and implementation;

◮
Computation theory;

◮
Fundamental in
omputing
urri
ula and
omputation pra
ti
e.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 5 / 207

Introdu
tion

Introdu
tion

Obje
tives

◮
Formalization of an important subset of
ontext-free language theory;

◮
Using the Coq proof assistant (type theory).

◮
Resear
h on:

◮
Logi
s and natural dedu
tion;

◮
Lambda
al
ulus;

◮
Type theory;

◮
Mathemati
al formalization;

◮
Intera
tive theorem proving.

◮
Build a set of libraries that
an be used in:

◮
Edu
ation;

◮
Certi�ed software
onstru
tion.

◮
Create and develop a
ulture of mathemati
al formalization.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 6 / 207

Introdu
tion

Introdu
tion

History

Ba
kground:

◮
2011-2012:
lasses on lambda
al
ulus, set theory and logi
;

◮
2013-2015: self study of proof theory, type theory and Coq;

Formalization:

◮
July 2013 until April 2014: regular languages, Coq as a fun
tional

programming language;

◮
April 2014 until August 2015:
ontext-free languages, fo
us on

lemmas and theorems;

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 7 / 207

Introdu
tion

Introdu
tion

History

Presentations:

◮
02/2014: WTA/EPUSP/USP;

◮
02/2014: Thesis proposal examination;

◮
09/2014: LSFA'14;

◮
07/2015: DCC/FC/UP;

◮
08/2015: LSFA'15.

Thesis writing:

◮
September 2015 until De
ember 2015.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 8 / 207

A Sampler of Formally Che
ked Proje
ts

A Sampler of Formally Che
ked Proje
ts

Mathemati
al formalization is a mature a
tivity:

◮
Use over the years;

◮
Diversity of proof assistants and underlying theories;

◮
Development of proof assistants te
hnology;

◮
Size,
omplexity and importan
e of many di�erent proje
ts;

◮
Theoreti
al and te
hnologi
ally oriented;

◮
A
ademy and industry oriented;

◮
A
lear trend;

◮
A point of no return.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 9 / 207

A Sampler of Formally Che
ked Proje
ts

A Sampler of Formally Che
ked Proje
ts

Some remarkable proje
ts:

◮
Four Color Theorem;

◮
Odd Order Theorem;

◮
Kepler Conje
ture;

◮
Homotopy Type Theory and Univalent Foundations of Mathemati
s;

◮
Compiler Certi�
ation;

◮
Mi
rokernel Certi�
ation;

◮
Digital Se
urity Certi�
ation.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 10 / 207

Related Work

Related Work

◮
Language and automata theory has been subje
t of formalization sin
e

the mid-1980s, when Kreitz used the Nuprl proof assistant to prove

results about deterministi
 �nite automata and the pumping lemma

for regular languages;

◮
Sin
e then, the theory of regular languages has been the subje
t of

intense formalization by various resear
hers using many di�erent proof

assistants;

◮
The formalization of
ontext-free language theory, on the other hand,

is more re
ent and in
ludes fewer a

omplishments, mostly

on
entrated in
erti�ed parser generation.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 11 / 207

Related Work

Related Work

Context-free languages

◮
A re
ent and important referen
e is the work of Christian Do
zkal,

Jan-Oliver Kaiser and Gert Smolka;

◮
Following the stru
ture of the book by Kozen, they did a fairly

omplete formalization of regular languages theory;

◮
All the development was done in Coq, is only 1,400 lines long, and

bene�ted from the use of the SSRe�e
t Coq plug-in.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 12 / 207

Related Work

Related Work

Context-free languages

◮
Most of the extensive e�ort, however, started in 2010 and has been

devoted to the
erti�
ation and validation of parser generators;

◮
On the more theoreti
al side, Norrish and Barthwal published in 2010

on general
ontext-free language theory formalization using the HOL4

proof assistant, in
luding:

◮
The existen
e of normal forms for grammars;

◮
Pushdown automata,

◮
Closure properties and

◮
A proof of the Pumping Lemma for
ontext-free languages.

◮
In 2015, Firsov and Uustalu proved the existen
e of a Chomsky

Normal Form grammar for every general
ontext-free grammar, using

the Agda proof assistant.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 13 / 207

Related Work

Related Work

Summary

Norrish & Barthwal2010 Firsov & Uustalu

Proof assistant HOL4 Agda

Closure X ×

Simpli�
ation X only empty and unit rules

CNF X X

GNF X ×
PDA X ×

PL X ×

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 14 / 207

Related Work

Related Work

Motivation

◮
Until 2015, the only
omprehensive work is the one by Norrish and

Barthwal (HOL4 in 2010);

◮
The Pumping Lemma has not been published;

◮
Firsov and Uustalu add a more limited implementation (Agda in 2015);

◮
No formalization in Coq.

◮
Formalization of the PL in HOL4 dis
overed only in november 2015.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 15 / 207

Formalization of Context-Free Language Theory

Formalized Results

◮
Closure properties of
ontext-free languages and grammars;

◮
Context-free grammar simpli�
ation;

◮
Chomsky Normal Form (CNF);

◮
Pumping Lemma (PL) for
ontext-free languages.

PL depends on CNF, whi
h in turn depends on grammar simpli�
ation.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 16 / 207

Formalization of Context-Free Language Theory

Phases

1

Sele
tion of an underlying formal logi
 to express the theory and then

a tool that supports it adequately;

2

Representation of the obje
ts of the universe of dis
ourse in this logi
;

3

Implementation of a set of basi
 transformations and mappings over

these obje
ts;

4

Statement of the lemmas and theorems that des
ribe the properties

and the behaviour of these obje
ts, and establish a
onsistent and

omplete theory;

5

Formal derivation of proofs of these lemmas and theorems, leading to

proof obje
ts that
an
on�rm their validity.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 17 / 207

Formalization of Context-Free Language Theory

De�nitions

◮
Symbols (in
luding terminal and non-terminal);

◮
Sentential forms (strings of terminal and non-terminal symbols);

◮
Senten
es (strings of terminal symbols);

◮
Context-free grammars;

◮
Derivations.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 18 / 207

Formalization of Context-Free Language Theory

Sequen
e

1

General purpose libraries;

2

Closure properties;

3

Grammar simpli�
ation→ Chomsky Normal Form → Pumping

Lemma.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 19 / 207

Formalization of Context-Free Language Theory

Support

◮
Basi
 lemmas on arithmeti
, lists and logi
;

◮
Basi
 lemmas on
ontext-free languages and grammars;

◮
Basi
 lemmas on binary trees and their relation to CNF grammars;

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 20 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Grammars

Terminal symbols as a type. Example:

Indu
tive nt: Type:=

| a

| b

|
.

Non-terminal symbols as a type. Example:

Indu
tive nt: Type:=

| X

| Y

| Z.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 21 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Grammars

Variables and notations:

Variables non_terminal terminal: Type.

Notation sf := (list (non_terminal + terminal)).

Notation senten
e := (list terminal).

Notation nlist:= (list non_terminal).

Examples:

[inr a; inr a; inr b; inr
℄

[inr a; inl X; inl Y; inr b℄

[inl Z; inl Z; inl X℄

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 22 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Grammars

(V,Σ, P, S)

Re
ord
fg (non_terminal terminal : Type): Type:= {

start_symbol: non_terminal;

rules: non_terminal→ sf → Prop;

rules_finite:

∃ n: nat,

∃ ntl: nlist,
∃ tl: tlist,
rules_finite_def start_symbol rules n ntl tl }.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 23 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Grammars

Definition rules_finite_def

(non_terminal terminal : Type)

(ss: non_terminal)

(rules: non_terminal→ sf → Prop)

(n: nat)

(ntl: list non_terminal)

(tl: list terminal) :=

In ss ntl ∧
(∀ left: non_terminal,

∀ right: list (non_terminal + terminal),

rules left right →
length right ≤ n ∧
In left ntl ∧
(∀ s : non_terminal, In (inl s) right → In s ntl) ∧
(∀ s : terminal, In (inr s) right → In s tl)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 24 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Grammars

Example:

G = ({S′, A,B, a, b}, {a, b}, {S′ → aS′, S′ → b}, S′)

that generates language a∗b:

Indu
tive nt: Type:= | S' | A | B.

Indu
tive t: Type:= | a | b.

Indu
tive rs: nt → list (nt + t) → Prop:=

r1: rs S' [inr a; inl S'℄

| r2: rs S' [inr b℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 25 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Grammars

Lemma rs_finite:

∃ n: nat,

∃ ntl: nlist,
∃ tl: tlist,
In S' ntl ∧
∀ left: non_terminal,
∀ right: sf,
rs1 left right →
(length right ≤ n) ∧
(In left ntl) ∧
(∀ s: non_terminal, In (inl s) right → In s ntl) ∧
(∀ s: terminal, In (inr s) right → In s tl).

Proof.

admit.

Qed.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 26 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Grammars

Definition g:
fg nt t:= {|

start_symbol:= S';

rules:= rs;

rules_finite:= rs_finite |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 27 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Derivations

s1 ⇒
∗ s2

Indu
tive derives

(non_terminal terminal : Type)

(g :
fg non_terminal terminal)

: sf → sf → Prop :=

| derives_refl :

∀ s : sf,

derives g s s

| derives_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives g s1 (s2 ++inl left :: s3) →
rules g left right → derives g s1 (s2 ++right ++s3)

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 28 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Derivations

S ⇒ α1 ⇒

derives

︷ ︸︸ ︷

α2 ⇒ ...⇒ αn−1
︸ ︷︷ ︸

generates

⇒ αn ⇒ ω

︸ ︷︷ ︸

produ
es

Definition generates (g:
fg) (s: sf): Prop:=

derives g [inl (start_symbol g)℄ s.

Definition produ
es (g:
fg) (s: senten
e): Prop:=

generates g (map terminal_lift s).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 29 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Derivations

Example:

Lemma derives_g_aab:

derives g [inl S'℄ [inr a; inr a; inr b℄.

Proof.

apply derives_step with (s2:=[inr a; inr a℄)(left:=S')(right:=[inr b℄).

apply derives_step with (s2:=[inr a℄)(left:=S')(right:=[inr a;inl S'℄).

apply derives_start with (left:=S')(right:=[inr a;inl S'℄).

apply r1.

apply r1.

apply r2.

Qed.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 30 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Derivations

Examples:

◮
derives g [inr a; inl S'℄ [inr a; inr b℄;

◮
generates g [inl S'℄ [inr a; inl S'℄ and

◮
produ
es g [inl S'℄ [inr a; inr b℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 31 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Derivations

Definition produ
es_empty

(g:
fg non_terminal terminal): Prop:=

produ
es g [℄.

Definition produ
es_non_empty

(g:
fg non_terminal terminal): Prop:=

∃ s: senten
e, produ
es g s ∧ s 6= [℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 32 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Derivations

Definition appears (g:
fg) (s: non_terminal + terminal): Prop:=

mat
h s with

| inl n ⇒ ∃ left: non_terminal,
∃ right: sf,
rules g left right ∧ ((n=left) ∨ (In (inl n) right))

| inr t ⇒ ∃ left: non_terminal,
∃ right: sf,
rules g left right ∧ In (inr t) right

end.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 33 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Derivations

To map a senten
e (senten
e) into a sentential form (sf):

Definition terminal_lift (t: terminal):

non_terminal + terminal:=

inr t.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 34 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Derivations

Two grammars g1 (with start symbol S1) and g2 (with start symbol S2) are

equivalent (denoted g1 ≡ g2) if they generate the same language, that is,

∀s, (S1 ⇒
∗

g1
s)↔ (S2 ⇒

∗

g2
s). This is represented in our formalization in

Coq by the predi
ate g_equiv:

Definition g_equiv

(non_terminal1 non_terminal2 terminal : Type)

(g1:
fg non_terminal1 terminal)

(g2:
fg non_terminal2 terminal): Prop:=

∀ s: senten
e,

produ
es g1 s ↔ produ
es g2 s.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 35 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Languages

L(G) = {w |S ⇒∗

g w}

Definition lang (terminal: Type):= senten
e→ Prop.

Definition lang_of_g (g:
fg): lang :=

fun w: senten
e ⇒ produ
es g w.

Definition lang_eq (l k: lang) :=

∀ w, l w ↔ k w.

Infix "==" := lang_eq (at level 80).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 36 / 207

Formalization of Context-Free Language Theory

Basi
 De�nitions

Languages

Definition
fl (terminal: Type) (l: lang terminal): Prop:=

∃ non_terminal: Type,
∃ g:
fg non_terminal terminal,

l == lang_of_g g.

Definition
ontains_empty (l: lang): Prop:=

l [℄.

Definition
ontains_non_empty (l: lang): Prop:=

∃ w: senten
e,

l w ∧ w 6= [℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 37 / 207

Formalization of Context-Free Language Theory

Generi
 CFG Library

General results on
ontext-free gramars and languages:

◮
4,393 lines of Coq s
ript,

∼
18.3% of the total;

◮
105 lemmas and theorems;

◮
Alternative de�nitions for predi
ate derives;

◮
Supports the whole formalization;

◮
Some examples follow.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 38 / 207

Formalization of Context-Free Language Theory

Generi
 CFG Library

◮
Derivation transitivity:

∀g, s1, s2, s3, (s1 ⇒
∗

g s2)→ (s2 ⇒
∗

g s3)→ (s1 ⇒
∗

g s3)

◮
Context independen
e:

∀g, s1, s2, s, s
′, (s1 ⇒

∗

g s2)→ (s · s1 · s
′ ⇒∗

g s · s2 · s
′)

◮
Con
atenation:

∀g, s1, s2, s3, s4, (s1 ⇒
∗

g s2)→ (s3 ⇒
∗

g s4)→ (s1 · s3 ⇒
∗

g s2 · s4)

◮
Derivation independen
e: ∀g, s1, s2, s3, (s1 · s2 ⇒

∗

g s3)→
∃s′

1
, s′

2
| (s3 = s′

1
· s′

2
) ∧ (s1 ⇒

∗

g s
′

1
) ∧ (s2 ⇒

∗

g s
′

2
)

◮
Derivation of a string of terminals from a non-terminal symbol:

∀g, s1, s2, n, w, (s1 · n · s2 ⇒
∗

g w)→ ∃ w′ | (n⇒∗

g w
′)

◮
Dire
t or indire
t derivation: ∀g, n,w, (n⇒∗

g w)→ (n→g

w) ∨ (∃ right |n→g right ∧ right⇒∗

g w)

◮
Grammar equivalen
e transitivity:

∀g1, g2, g3, (g1 ≡ g2) ∧ (g2 ≡ g3)→ (g1 ≡ g3)

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 39 / 207

Formalization of Context-Free Language Theory

Generi
 CFG Library

Alternative de�nitions for predi
ate derives:

◮
Used to ease some proofs;

◮
Equivalen
e has been proved;

◮
Standard derives has been used in statements.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 40 / 207

Formalization of Context-Free Language Theory

Generi
 CFG Library

Indu
tive derives2

(non_terminal terminal : Type)

(g :
fg non_terminal terminal)

: sf → sf → Prop :=

| derives2_refl :

∀ s : sf,

derives2 g s s

| derives2_step :

∀ (s1 s2 s3 : sf)

∀ (left : non_terminal)

∀ (right : sf),

derives2 g (s1 ++right ++s2) s3 →
rules g left right →
derives2 g (s1 ++inl left :: s2) s3.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 41 / 207

Formalization of Context-Free Language Theory

Generi
 CFG Library

Indu
tive derives3

(g:
fg): non_terminal→ senten
e→ Prop :=

| derives3_rule:

∀ (n: non_terminal) (lt: senten
e),

rules g n (map inr lt) → derives3 g n lt

| derives3_step:

∀ (n: non_terminal) (ltnt: sf) (lt: list terminal),

rules g n ltnt → derives3_aux g ltnt lt → derives3 g n lt

with derives3_aux (g:
fg): sf → senten
e→ Prop :=

| derives3_aux_empty:

derives3_aux g [℄ [℄

| derives3_aux_t:

∀ (t: terminal) (ltnt: sf) (lt: senten
e),

derives3_aux g ltnt lt → derives3_aux g (inr t :: ltnt) (t :: lt)

| derives3_aux_nt:

∀ (n: non_terminal) (lt lt': senten
e) (ltnt: sf),

derives3_aux g ltnt lt → derives3 g n lt' →
derives3_aux g (inl n :: ltnt) (lt' ++lt).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 42 / 207

Formalization of Context-Free Language Theory

Generi
 CFG Library

Indu
tive derives6

(non_terminal terminal : Type)

(g :
fg non_terminal terminal)

: nat → sf → sf → Prop :=

| derives6_0 :

∀ s : sf,

derives6 g 0 s s

| derives6_sum :

∀ (left : non_terminal)

∀ (right : sf)

∀ (i : nat)

∀ (s1 s2 s3 : sf),

rules g left right →
derives6 g i (s1 ++right ++s2) s3 →
derives6 g (S i) (s1 ++[inl left℄ ++s2) s3.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 43 / 207

Formalization of Context-Free Language Theory

Generi
 CFG Library

The equivalen
e of de�nitions derives, derives2, derives3 and

derives6 has been proved:

◮
derives_equiv_derives2, for

derives g s1 s2 ↔ derives2 g s1 s2;

◮
derives_equiv_derives3, for

derives g n (map inr s) ↔ derives3 g n s;

◮
derives_equiv_derives6, for

derives g s1 s2 ↔ ∃ n, derives6 g n s1 s2.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 44 / 207

Formalization of Context-Free Language Theory

Method

Most of the work share a
ommon obje
tive: to
onstru
t a new grammar

from an existing one (or two existing ones). This is the
ase of:

◮
Closure properties:

◮
Union;

◮
Con
atenation;

◮
Kleene star;

◮
Grammar simpli�
ation:

◮
Elimination of empty rules;

◮
Elimination of unit rules;

◮
Elimination of useless symbols;

◮
Elimination of ina

essible symbols;

◮
Chomsky Normal Form (CNF).

Thus, a
ommon method to be used in all these
ases has been devised.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 45 / 207

Formalization of Context-Free Language Theory

Method

1

Depending on the
ase, de�ne a new type of non-terminal symbols;

this will be important, for example, when we want to guarantee that

the start symbol of the grammar does not appear in the right-hand

side of any rule or when we have to
onstru
t new non-terminals from

the existing ones;

2

Indu
tively de�ne the rules of the new grammar, in a way that it

allows the
onstru
tion of the proofs that the resulting grammar has

the required properties; these new rules will likely make use of the new

non-terminal symbols des
ribed above;

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 46 / 207

Formalization of Context-Free Language Theory

Method

3

De�ne the new grammar by using the new non-terminal symbols and

the new rules; de�ne the new start symbol (whi
h might be a new

symbol or an existing one) and build a proof of the �niteness of the

set of rules for this new grammar;

4

State and prove all the lemmas and theorems that will assert that the

newly de�ned grammar has the desired properties;

5

Consolidate the results within the same s
ope and �nally with the

previously obtained results.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 47 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Given two arbitrary
ontext-free grammars g1 and g2, the following

de�nitions are used to
onstru
t g3 su
h that L(g3) = L(g1) ∪ L(g2) (that
is, the language generated by g3 is the union of the languages generated by

g1 and g2).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 48 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

◮
For the new set of non-terminals:

◮
All the non-terminals of g1;

◮
All the non-terminals of g2;

◮
A fresh new non-terminal symbol (S3).

◮
For the new set of rules:

◮
All the rules of g1;

◮
All the rules of g2;

◮
Two new rules: S3 → S1 and S3 → S2.

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The new non-terminal (S3) as the start symbol.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 49 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Indu
tive g_uni_nt (non_terminal_1 non_terminal_2 : Type): Type:=

| Start_uni

| Transf1_uni_nt: non_terminal_1→ g_uni_nt

| Transf2_uni_nt: non_terminal_2→ g_uni_nt.

Notation sf1:= (list (non_terminal_1 + terminal)).

Notation sf2:= (list (non_terminal_2 + terminal)).

Notation sfu:= (list (g_uni_nt + terminal)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 50 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Definition g_uni_sf_lift1 (
: non_terminal_1 + terminal)

: g_uni_nt + terminal:=

mat
h
 with

| inl nt ⇒ inl (Transf1_uni_nt nt)

| inr t ⇒ inr t

end.

Definition g_uni_sf_lift2 (
: non_terminal_2 + terminal)

: g_uni_nt + terminal:=

mat
h
 with

| inl nt ⇒ inl (Transf2_uni_nt nt)

| inr t ⇒ inr t

end.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 51 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Indu
tive g_uni_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1:
fg non_terminal_1 terminal)

(g2:
fg non_terminal_2 terminal): g_uni_nt → sfu → Prop :=

| Start1_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf1_uni_nt (start_symbol g1))℄

| Start2_uni:

g_uni_rules g1 g2 Start_uni [inl (Transf2_uni_nt (start_symbol g2))℄

| Lift1_uni:

∀ nt: non_terminal_1, ∀ s: sf1,
rules g1 nt s →
g_uni_rules g1 g2 (Transf1_uni_nt nt) (map g_uni_sf_lift1 s)

| Lift2_uni:

∀ nt: non_terminal_2, ∀ s: sf2,
rules g2 nt s →
g_uni_rules g1 g2 (Transf2_uni_nt nt) (map g_uni_sf_lift2 s).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 52 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Definition g_uni

(non_terminal_1 non_terminal_2 terminal : Type)

(g1:
fg non_terminal_1 terminal)

(g2:
fg non_terminal_2 terminal)

: (
fg g_uni_nt terminal):=

{| start_symbol:= Start_uni;

rules:= g_uni_rules g1 g2;

rules_finite:= g_uni_finite g1 g2 |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 53 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Consider grammars G1 and G2:

◮ G1 = ({S1,X1, a, b}, {a, b}, {S1 → aX1,X1 → aX1 | b}, S1);
◮ G2 = ({S2,X2, a, b}, {a, b}, {S2 → aX2,X2 → aX2 | c}, S2).

Then, the new grammar G3 that generates L(G1) ∪ L(G2)
an be

expressed as:

G3 = ({S3, S1, S2,X1,X2, a, b, c}, {a, b, c}, P3 , S3)

with P3
ontaining the following rules:

S3 → S1 | S2

S1 → aX1

X1 → aX1 | b

S2 → aX2

X2 → aX2 | c

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 54 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Indu
tive non_terminal1: Type:=

| S1

| X1.

Indu
tive non_terminal2: Type:=

| S2

| X2.

Indu
tive terminal: Type:=

| a

| b

|
.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 55 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Indu
tive rs1:

non_terminal1→ list (non_terminal1 + terminal) → Prop:=

| r11: rs1 S1 [inr a; inl X1℄

| r12: rs1 X1 [inr a; inl X1℄

| r13: rs1 X1 [inr b℄.

Definition g1:
fg non_terminal1 terminal := {|

start_symbol:= S1;

rules:= rs1;

rules_finite:= rs1_finite |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 56 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Indu
tive rs2:

non_terminal2→ list (non_terminal2 + terminal) → Prop:=

| r21: rs2 S2 [inr a; inl X2℄

| r22: rs2 X2 [inr a; inl X2℄

| r23: rs2 X2 [inr
℄.

Definition g2:
fg non_terminal2 terminal := {|

start_symbol:= S2;

rules:= rs2;

rules_finite:= rs2_finite |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 57 / 207

Formalization of Context-Free Language Theory

Closure Properties

Union

Definition g3:= g_uni g1 g2.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 58 / 207

Formalization of Context-Free Language Theory

Closure Properties

Con
atenation

Given two arbitrary
ontext-free grammars g1 and g2, the following

de�nitions are used to
onstru
t g3 su
h that L(g3) = L(g1) · L(g2) (that
is, the language generated by g3 is the
on
atenation of the languages

generated by g1 and g2).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 59 / 207

Formalization of Context-Free Language Theory

Closure Properties

Con
atenation

◮
For the new set of non-terminals:

◮
All the non-terminals of g1;

◮
All the non-terminals of g2;

◮
A fresh new non-terminal symbol (S3).

◮
For the new set of rules:

◮
All the rules of g1;

◮
All the rules of g2;

◮
One new rule: S3 → S1S2.

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The new non-terminal (S3) as the start symbol.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 60 / 207

Formalization of Context-Free Language Theory

Closure Properties

Con
atenation

Indu
tive g_
at_nt (non_terminal_1 non_terminal_2 terminal : Type):

Type:=

| Start_
at

| Transf1_
at_nt: non_terminal_1→ g_
at_nt

| Transf2_
at_nt: non_terminal_2→ g_
at_nt.

Notation sf1:= (list (non_terminal_1 + terminal)).

Notation sf2:= (list (non_terminal_2 + terminal)).

Notation sf
:= (list (g_
at_nt + terminal)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 61 / 207

Formalization of Context-Free Language Theory

Closure Properties

Con
atenation

Definition g_
at_sf_lift1 (
: non_terminal_1 + terminal):

g_
at_nt + terminal:=

mat
h
 with

| inl nt ⇒ inl (Transf1_
at_nt nt)

| inr t ⇒ inr t

end.

Definition g_
at_sf_lift2 (
: non_terminal_2 + terminal):

g_
at_nt + terminal:=

mat
h
 with

| inl nt ⇒ inl (Transf2_
at_nt nt)

| inr t ⇒ inr t

end.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 62 / 207

Formalization of Context-Free Language Theory

Closure Properties

Con
atenation

Indu
tive g_
at_rules

(non_terminal_1 non_terminal_2 terminal : Type)

(g1:
fg non_terminal_1 terminal)

(g2:
fg non_terminal_2 terminal): g_
at_nt → sf
 → Prop :=

| New_
at:

g_
at_rules g1 g2 Start_
at

([inl (Transf1_
at_nt (start_symbol g1))℄++

[inl (Transf2_
at_nt (start_symbol g2))℄)

| Lift1_
at:

∀ nt s,

rules g1 nt s →
g_
at_rules g1 g2 (Transf1_
at_nt nt) (map g_
at_sf_lift1 s)

| Lift2_
at:

∀ nt s,

rules g2 nt s →
g_
at_rules g1 g2 (Transf2_
at_nt nt) (map g_
at_sf_lift2 s).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 63 / 207

Formalization of Context-Free Language Theory

Closure Properties

Con
atenation

Definition g_
at

(non_terminal_1 non_terminal_2 terminal : Type)

(g1:
fg non_terminal_1 terminal)

(g2:
fg non_terminal_2 terminal)

: (
fg g_
at_nt terminal):=

{| start_symbol:= Start_
at;

rules:= g_
at_rules g1 g2;

rules_finite:= g_
at_finite g1 g2 |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 64 / 207

Formalization of Context-Free Language Theory

Closure Properties

Con
atenation

Consider grammars G1 and G2:

◮ G1 = ({S1,X1, a, b}, {a, b}, {S1 → aX1,X1 → aX1 | b}, S1);
◮ G2 = ({S2,X2, a, b}, {a, b}, {S2 → aX2,X2 → aX2 | c}, S2).

Then, the new grammar G3 that generates L(G1) · L(G2)
an be

expressed as:

G3 = ({S3, S1, S2,X1,X2, a, b, c}, {a, b, c}, P3 , S3)

with P3
ontaining the following rules:

S3 → S1S2

S1 → aX1

X1 → aX1 | b

S2 → aX2

X2 → aX2 | c

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 65 / 207

Formalization of Context-Free Language Theory

Closure Properties

Con
atenation

Definition g3:= g_
at g1 g2.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 66 / 207

Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Given an arbitrary
ontext-free grammar g1, the following de�nitions are

used to
onstru
t g2 su
h that L(g2) = (L(g1))
∗
(that is, the language

generated by g2 is the re�exive and transitive
on
atenation (Kleene star)

of the language generated by g1).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 67 / 207

Formalization of Context-Free Language Theory

Closure Properties

Kleene star

◮
For the new set of non-terminals:

◮
All the non-terminals of g1;

◮
A fresh new non-terminal symbol (S2).

◮
For the new set of rules:

◮
All the rules of g1;

◮
Two new rules: S2 → S2S1 and S2 → ǫ.

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The new non-terminal (S2) as the start symbol.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 68 / 207

Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Indu
tive g_
lo_nt (non_terminal : Type): Type :=

| Start_
lo : g_
lo_nt

| Transf_
lo_nt : non_terminal→ g_
lo_nt.

Notation sf
:= (list (g_
lo_nt + terminal)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 69 / 207

Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Definition g_
lo_sf_lift (
: non_terminal + terminal):

g_
lo_nt + terminal:=

mat
h
 with

| inl nt ⇒ inl (Transf_
lo_nt nt)

| inr t ⇒ inr t

end.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 70 / 207

Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Indu
tive g_
lo_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: g_
lo_nt→ sf
 → Prop :=

| New1_
lo:

g_
lo_rules g Start_
lo ([inl Start_
lo℄ ++

[inl (Transf_
lo_nt (start_symbol g))℄)

| New2_
lo:

g_
lo_rules g Start_
lo [℄

| Lift_
lo:

∀ nt: non_terminal,
∀ s: sf,

rules g nt s →
g_
lo_rules g (Transf_
lo_nt nt) (map g_
lo_sf_lift s).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 71 / 207

Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Definition g_
lo (g:
fg non_terminal terminal):

(non_terminal terminal : Type)

(g:
fg g_
lo_nt terminal):=

{| start_symbol:= Start_
lo;

rules:= g_
lo_rules g;

rules_finite:= g_
lo_finite g |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 72 / 207

Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Consider on
e more grammar

G1 = ({S1,X1, a, b}, {a, b}, {S1 → aX1,X1 → aX1 | b}, S1)

Then, the new grammar G2 that generates L(G1)
∗

an be expressed as:

G2 = ({S2, S1,X1, a, b, c}, {a, b, c}, P2 , S2)

with P2
ontaining the following rules:

S2 → ǫ

S2 → S2S1

S1 → aX1

X1 → aX1 | b

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 73 / 207

Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Definition g2:= g_
lo g1.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 74 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Con
atenation (
orre
tness)

Considering that g3 is the
on
atenation of g1 and g2 and S3, S1 and S2

are, respe
tively, the start symbols of g3, g1 and g2)

∀g1, g2, s1, s2, (S1 ⇒
∗

g1
s1) ∧ (S2 ⇒

∗

g2
s2)→ (S3 ⇒

∗

g3
s1s2)

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 75 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Con
atenation (
orre
tness)

Theorem g_
at_
orre
t:

∀ g1:
fg non_terminal_1 terminal,

∀ g2:
fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
generates g1 s1 ∧ generates g2 s2 →
generates (g_
at g1 g2)

((map g_
at_sf_lift1 s1)++(map g_
at_sf_lift2 s2)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 76 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Con
atenation (
ompleteness)

∀s3, (S3 ⇒
∗

g3
s3)→ ∃s1, s2 | (s3 = s1 · s2) ∧ (S1 ⇒

∗

g1
s1) ∧ (S2 ⇒

∗

g2
s2)

Theorem g_
at_
orre
t_inv:

∀ g1:
fg non_terminal_1 terminal,

∀ g2:
fg non_terminal_2 terminal,

∀ s: sf
,

generates (g_
at g1 g2) s →
s = [inl (start_symbol (g_
at g1 g2))℄ ∨
∃ s1: sf1,
∃ s2: sf2,
s =(map g_
at_sf_lift1 s1)++(map g_
at_sf_lift2 s2) ∧
generates g1 s1 ∧ generates g2 s2.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 77 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Union (
orre
tness)

Considering that g3 is the union of g1 and g2 and S3, S1 and S2 are,

respe
tively, the start symbols of g3, g1 and g2):

∀g1, g2, s1, s2, (S1 ⇒
∗

g1
s1 → S3 ⇒

∗

g3
s1) ∧ (S2 ⇒

∗

g2
s2 → S3 ⇒

∗

g3
s2)

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 78 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Union (
orre
tness)

Theorem g_uni_
orre
t:

∀ g1:
fg non_terminal_1 terminal,

∀ g2:
fg non_terminal_2 terminal,

∀ s1: sf1,
∀ s2: sf2,
(generates g1 s1 → generates (g_uni g1 g2) (map g_uni_sf_lift1 s1))

∧
(generates g2 s2 → generates (g_uni g1 g2) (map g_uni_sf_lift2 s2)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 79 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Union (
ompleteness)

∀s3, (S3 ⇒
∗

g3
s3)→ (S1 ⇒

∗

g1
s3) ∨ (S2 ⇒

∗

g2
s3)

Theorem g_uni_
orre
t_inv:

∀ g1:
fg non_terminal_1 terminal,

∀ g2:
fg non_terminal_2 terminal,

∀ s: sfu,

generates (g_uni g1 g2) s →
(s=[inl (start_symbol (g_uni g1 g2))℄) ∨
(∃ s1: sf1, (s=(map g_uni_sf_lift1 s1) ∧ generates g1 s1)) ∨
(∃ s2: sf2, (s=(map g_uni_sf_lift2 s2) ∧ generates g2 s2)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 80 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Kleene star (
orre
tness)

Considering that g2 is the Kleene star of g1 and S2 and S1 are, respe
tively,

the start symbols of g2 and g1):

∀g1, s1, s2, (S2 ⇒
∗

g2
ǫ) ∧ ((S2 ⇒

∗

g2
s2) ∧ (S1 ⇒

∗

g1
s1)→ S2 ⇒

∗

g2
s2 · s1)

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 81 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Kleene star (
orre
tness)

Theorem g_
lo_
orre
t:

∀ g:
fg non_terminal terminal,

∀ s: sf,

∀ s': sf
,

generates (g_
lo g) nil ∧ (generates (g_
lo g) s' ∧ generates g s →
generates (g_
lo g) (s'++ map g_
lo_sf_lift s)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 82 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Kleene star (
ompleteness)

∀s2, (S2 ⇒
∗

g2
s2)→ (s2 = ǫ)∨

(∃ s1, s
′

2 | (s2 = s′2 · s1) ∧ (S2 ⇒
∗

g2
s′2) ∧ (S1 ⇒

∗

g1
s1))

Theorem g_
lo_
orre
t_inv:

∀ g:
fg non_terminal terminal,

∀ s: sf
,

generates (g_
lo g) s →
(s=[℄) ∨
(s=[inl (start_symbol (g_
lo g))℄) ∨
(∃ s': sf
,

∃ s'': sf,

generates (g_
lo g) s' ∧ generates g s'' ∧ s=s' ++map g_
lo_sf_lift s'').

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 83 / 207

Formalization of Context-Free Language Theory

Closure Properties

Corre
tness and Completeness

Proof strategy

Indu
tion over the predi
ate derives or one of its variants.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 84 / 207

Formalization of Context-Free Language Theory

Closure Properties

Closure over Languages

De�nitions

Indu
tive l_uni (terminal : Type) (l1 l2: lang terminal):

lang terminal:=

| l_uni_l1: ∀ s: senten
e, l1 s → l_uni l1 l2 s

| l_uni_l2: ∀ s: senten
e, l2 s → l_uni l1 l2 s.

Indu
tive l_
at (terminal : Type) (l1 l2: lang terminal):

lang terminal:=

| l_
at_app: ∀ s1 s2: senten
e, l1 s1 → l2 s2 → l_
at l1 l2 (s1 ++s2).

Indu
tive l_
lo (terminal : Type) (l: lang terminal):

lang terminal:=

| l_
lo_nil: l_
lo l [℄

| l_
lo_app: ∀ s1 s2: senten
e, (l_
lo l) s1 → l s2 → l_
lo l (s1 ++s2).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 85 / 207

Formalization of Context-Free Language Theory

Closure Properties

Closure over Languages

Proof strategy

◮
Corre
tness and
ompleteness of union,
on
atenation and Kleene

star: trivial from de�nitions;

◮
Non-trivial for l_uni, l_
at and l_
lo being
ontext-free languages:

use the de�nition of CFL, �nd
orresponding CFGs and use previous

results.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 86 / 207

Formalization of Context-Free Language Theory

Closure Properties

Closure over Languages

Theorem l_uni_is_
fl:

∀ l1 l2: lang terminal,

fl l1 →
fl l2 →
fl (l_uni l1 l2).

Theorem l_
at_is_
fl:

∀ l1 l2: lang terminal,

fl l1 →
fl l2 →
fl (l_
at l1 l2).

Theorem l_
lo_is_
fl:

∀ l: lang terminal,

fl l →
fl (l_
lo l).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 87 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Constru
t an equivalent grammar, free of:

1

Empty rules;

2

Unit rules;

3

Useless symbols;

4

Ina

essible symbols.

For all G, if G is non-empty, then there exists G′
su
h that L(G) = L(G′)

and G′
has no empty rules (ex
ept for one, if G generates the empty

string), no unit rules, no useless symbols, no ina

essible symbols and the

start symbol of G′
does not appear on the right-hand side of any other rule

of G′
.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 88 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rule

An empty rule r ∈ P is a rule whose right-hand side β is empty (e.g.

X → ǫ). We formalize that for all G, there exists G′
su
h that

L(G) = L(G′) and G′
has no empty rules, ex
ept for a single rule S → ǫ if

ǫ ∈ L(G); in this
ase, S (the initial symbol of G′
) does not appear on the

right-hand side of any rule of G′
.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 89 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Nullable symbol:

Definition empty

(g:
fg terminal _) (s: non_terminal + terminal): Prop:=

derives g [s℄ [℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 90 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Strategy for g1:

1

Constru
t g2 (using g1) su
h that L(g2) = L(g1)− ǫ;
2

Constru
t g3 (using g2) su
h that:

◮ L(g3) = L(g1) ∪ {ǫ} if ǫ ∈ L(g1) or
◮ L(g3) = L(g1) if ǫ /∈ L(g1).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 91 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Step 1:

◮
For the new set of non-terminals:

◮
All the non-terminals of g1;

◮
A fresh new non-terminal symbol (S2).

◮
For the new set of rules:

◮
All non-empty rules of g1;

◮
All rules of g1 with every
ombination on nullable symbols in the

right-hand side removed, ex
ept if empty;

◮
One new rule: S2 → S1.

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The new non-terminal (S2) as the start symbol.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 92 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Indu
tive non_terminal': Type:=

| Lift_nt: non_terminal→ non_terminal'

| New_ss.

Notation sf' := (list (non_terminal' + terminal)).

Definition symbol_lift

(s: non_terminal + terminal): non_terminal' + terminal:=

mat
h s with

| inr t ⇒ inr t

| inl n ⇒ inl (Lift_nt n)

end.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 93 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Indu
tive g_emp_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' → sf' → Prop :=

| Lift_dire
t :

∀ left: non_terminal,
∀ right: sf,
right 6= [℄ → rules g left right →
g_emp_rules g (Lift_nt left) (map symbol_lift right)

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 94 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

| Lift_indire
t:

∀ left: non_terminal,
∀ right: sf,
g_emp_rules g (Lift_nt left) (map symbol_lift right)→
∀ s1 s2: sf,

∀ s: non_terminal,

right = s1 ++(inl s) :: s2 →
empty g (inl s) →
s1 ++s2 6= [℄ →
g_emp_rules g (Lift_nt left) (map symbol_lift (s1 ++s2))

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 95 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

| Lift_start_emp:

g_emp_rules g New_ss [inl (Lift_nt (start_symbol g))℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 96 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Definition g_emp

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal' terminal :=

{| start_symbol:= New_ss;

rules:= g_emp_rules g;

rules_finite:= g_emp_finite g |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 97 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Suppose, for example, that X,A,B,C are non-terminals, of whi
h A,B
and C are nullable, a, b and c are terminals and X → aAbBcC is a rule of

g. Then, the above de�nitions assert that X → aAbBcC is a rule of

g_emp g, and also:

◮ X → aAbBc;

◮ X → abBcC;

◮ X → aAbcC;

◮ X → aAbc;

◮ X → abBc;

◮ X → abcC;

◮ X → abc.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 98 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Step 2:

◮
For the new set of non-terminals:

◮
All the non-terminals of Step 1.

◮
For the new set of rules:

◮
All the rules of Step 1;

◮
One new rule: S2 → ǫ if ǫ ∈ L(g1).

◮
For the new grammar:

◮
The same set of non-terminals;

◮
The new set of rules;

◮
The same start symbol (S2).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 99 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Indu
tive g_emp'_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' non_terminal→ sf' → Prop :=

| Lift_all:

∀ left: non_terminal' _,
∀ right: sf',
rules (g_emp g) left right → g_emp'_rules g left right

| Lift_empty:

empty g (inl (start_symbol g)) →
g_emp'_rules g (start_symbol (g_emp g)) [℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 100 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Definition g_emp'

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg (non_terminal' _) terminal :=

{| start_symbol:= New_ss _;

rules:= g_emp'_rules g;

rules_finite:= g_emp'_finite g |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 101 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Theorem g_emp'_
orre
t:

∀ g:
fg non_terminal terminal,

g_equiv (g_emp' g) g ∧
(produ
es_empty g → has_one_empty_rule (g_emp' g)) ∧
(∼ produ
es_empty g → has_no_empty_rules (g_emp' g)) ∧
start_symbol_not_in_rhs (g_emp' g).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 102 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

Definition has_one_empty_rule (g:
fg non_terminal terminal): Prop:=

∀ left: non_terminal,
∀ right: sf,
rules g left right →
((left = start_symbol g) ∧ (right = [℄) ∨ right 6= [℄).

Definition has_no_empty_rules (g:
fg non_terminal terminal): Prop:=

∀ left: non_terminal,
∀ right: sf,
rules g left right → right 6= [℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 103 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Empty rules elimination

The de�nition of g_equiv, when applied to this theorem, yields:

∀ s: senten
e,

produ
es (g_emp' g) s ↔ produ
es g s.

For the → part, the strategy used was to prove that for every rule

left→g_emp′ right, either left→g right is a rule of g or left⇒∗

g right.
For the ← part, the strategy was more
ompli
ated, and involves indu
tion

over the number of derivation steps in g.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 104 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Unit rule

A unit rule r ∈ P is a rule whose right-hand side β
ontains a single

non-terminal symbol (e.g. X → Y). We formalize that for all G, there

exists G′
su
h that L(G) = L(G′) and G′

has no unit rules.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 105 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Unit rules elimination

Indu
tive unit

(terminal non_terminal : Type)

(g:
fg terminal non_terminal)

(a: non_terminal)

: non_terminal→ Prop:=

| unit_rule:

∀ (b: non_terminal),

rules g a [inl b℄ → unit g a b

| unit_trans:

∀ b
: non_terminal,

unit g a b → unit g b
 → unit g a
.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 106 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Unit rules elimination

For g1:

◮
For the new set of non-terminals:

◮
All the non-terminals of g1.

◮
For the new set of rules:

◮
All non-unit rules of g1;

◮
New rules: one for ea
h a, b, right su
h that (i) unit a b, (ii)

b→ right, (iii) right is not a single non-terminal; the new rule

be
omes a→ right.

◮
For the new grammar:

◮
The same set of non-terminals;

◮
The new set of rules;

◮
The same start symbol (S1).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 107 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Unit rules elimination

Indu
tive g_unit_rules

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_dire
t' :

∀ left: non_terminal,
∀ right: sf,
(∀ r: non_terminal, right 6= [inl r℄) →
rules g left right →
g_unit_rules g left right

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 108 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Unit rules elimination

| Lift_indire
t':

∀ a b: non_terminal,

unit g a b →
∀ right: sf,
rules g b right →
(∀
: non_terminal, right 6= [inl
℄) →
g_unit_rules g a right.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 109 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Unit rules elimination

Definition g_unit

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_unit_rules g;

rules_finite:= g_unit_finite g |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 110 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Unit rules elimination

As an example,
onsider the grammar G = (S,X, Y, Z, a, b, c, a, b, c, P, S),
with P
ontaining the following rules:

S → X | ab

X → Y | bc

Y → Z | ac

Z → abc

The above de�nitions assert that the new grammar G′
(the grammar that

is equivalent to G and is free of unit rules) has the following rules:

S → abc | ac | bc | ab

X → abc | ac | bc

Y → abc | ac

Z → abc

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 111 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Unit rules elimination

Theorem g_unit_
orre
t:

∀ g:
fg non_terminal terminal,

g_equiv (g_unit g) g ∧ has_no_unit_rules (g_unit g).

The predi
ate has_no_unit_rules states that the argument grammar has

no unit rules at all:

Definition has_no_unit_rules (g:
fg non_terminal terminal): Prop:=

∀ left n: non_terminal,

∀ right: sf,
rules g left right → right 6= [inl n℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 112 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Unit rules elimination

For the → part of the g_equiv (g_unit g) g proof, the strategy adopted

was to prove that for every rule left→g_unit right of (g_unit g), either

left→g right is a rule of g or left⇒∗

g right. For the ← part, the

strategy was more
ompli
ated, and involves indu
tion over a predi
ate

that is equivalent to derives (derives3), but generates the senten
e

dire
tly without
onsidering the appli
ation of a sequen
e of rules, whi
h

allows one to abstra
t the appli
ation of unit rules in g.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 113 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Useless symbol

A symbol s ∈ V is useful if it is possible to derive a string of terminal

symbols from it using the rules of the grammar. Otherwise, s is
alled an

useless symbol. A useful symbol s is one su
h that s⇒∗ ω, with ω ∈ Σ∗
.

Naturally, this de�nition
on
erns mainly non-terminals, as terminals are

trivially useful. We formalize that, for all G su
h that L(G) 6= ∅, there
exists G′

su
h that L(G) = L(G′) and G′
has no useless symbols.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 114 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Useless symbol elimination

Definition useful

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

mat
h s with

| inr t ⇒ True

| inl n ⇒ ∃ s: senten
e, derives g [inl n℄ (map term_lift s)

end.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 115 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Useless symbol elimination

For g1:

◮
For the new set of non-terminals:

◮
All the non-terminals of g1.

◮
For the new set of rules:

◮
All rules of g1, ex
ept those that have useless symbols.

◮
For the new grammar:

◮
The same set of non-terminals;

◮
The new set of rules;

◮
The same start symbol (S1, whi
h must be useful).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 116 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Useless symbol elimination

Indu
tive g_use_rules

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_use :

∀ left: non_terminal,
∀ right: sf,
rules g left right →
useful g (inl left) →
(∀ s: non_terminal + terminal, In s right → useful g s) →
g_use_rules g left right.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 117 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Useless symbol elimination

Definition g_use

(terminal non_terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal terminal:=

{| start_symbol:= start_symbol g;

rules:= g_use_rules g;

rules_finite:= g_use_finite g |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 118 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Useless symbol elimination

As an example,
onsider grammar G = (X,X, Y, Z, a, b, c, a, b, c, P, S),
with P
ontaining the following rules:

S → Xa | Y a | Za

X → aX | bY

Y → aY | bX

Z → bZ | c

Clearly, symbols X and Y are useless symbols and
an thus be removed

from G, resulting in G′
with the following set of rules:

S → Za

Z → bZ | c

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 119 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Useless symbol elimination

Theorem g_use_
orre
t:

∀ g:
fg non_terminal terminal,

non_empty g → g_equiv (g_use g) g ∧ has_no_useless_symbols (g_use g).

Definition non_empty (g:
fg non_terminal terminal):

Prop:=

useful g (inl (start_symbol g)).

Definition has_no_useless_symbols (g:
fg non_terminal terminal):

Prop:=

∀ n: non_terminal, appears g (inl n) → useful g (inl n).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 120 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Useless symbol elimination

◮
Hypothesis non_empty g on lemma g_use_
orre
t is ne
essary in

order to assure that the new grammar will have a start symbol (the

start symbol should be a useful symbol, otherwise it would not be

possible to obtain a new grammar free of useless symbols).

◮
The → part of the g_equiv proof is straightforward, sin
e every rule

of g_use is also a rule of g. For the
onverse, it is ne
essary to show

that every symbol used a the derivation of g is useful, and thus the

rules used in this derivation also appear in g_use.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 121 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Ina

essible symbol

A symbol s ∈ V is a

essible if it is part of at least one string generated

from the root symbol of the grammar. Otherwise, it is
alled an

ina

essible symbol. An a

essible symbol s is one su
h that S ⇒∗ αsβ,
with α, β ∈ V ∗

. We formalize that for all G, there exists G′
su
h that

L(G) = L(G′) and G′
has no ina

essible symbols.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 122 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Ina

essible symbol elimination

Definition a

essible

(terminal non_terminal : Type)

(g :
fg non_terminal terminal)

(s: non_terminal + terminal): Prop:=

∃ s1 s2: sf, derives g [inl (start_symbol g)℄ (s1++s::s2).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 123 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Ina

essible symbol elimination

For g1:

◮
For the new set of non-terminals:

◮
All the non-terminals of g1.

◮
For the new set of rules:

◮
All rules of g1, ex
ept those that have ina

essible symbols.

◮
For the new grammar:

◮
The same set of non-terminals;

◮
The new set of rules;

◮
The same start symbol (S1).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 124 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Ina

essible symbol elimination

Indu
tive g_a

_rules

(terminal non_terminal : Type)

(g :
fg non_terminal terminal)

: non_terminal→ sf → Prop :=

| Lift_a

 : ∀ left: non_terminal,
∀ right: sf,
rules g left right → a

essible g (inl left) →
g_a

_rules g left right.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 125 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Ina

essible symbol elimination

Definition g_a

(terminal non_terminal : Type)

(g :
fg non_terminal terminal)

:
fg non_terminal terminal :=

{| start_symbol:= start_symbol g;

rules:= g_a

_rules g;

rules_finite:= g_a

_finite g |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 126 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Ina

essible symbol elimination

As an example,
onsider grammar G = (X,X, Y, Z, a, b, c, a, b, c, P, S),
with P
ontaining the following rules:

S → aX | bX

X → aX | bX | a | b

Y → cZ | a

Z → cZ | b

Clearly, symbols Y , Z and c are ina

essible symbols and
an thus be

removed from G, resulting in G′
with the following set of rules:

S → aX | bX

X → aX | bX | a | b

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 127 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Ina

essible symbol elimination

Theorem g_a

_
orre
t:

∀ g:
fg non_terminal terminal,

g_equiv (g_a

 g) g ∧ has_no_ina

essible_symbols (g_a

 g).

Definition has_no_ina

essible_symbols (g:
fg non_terminal terminal): Prop:=

∀ s: (non_terminal + terminal), appears g s → a

essible g s.

The → part of the g_equiv proof is also straightforward, sin
e every rule

of g_a

 is also a rule of g. For the
onverse, it is ne
essary to show that

every symbol used in the derivation of g is a

essible, and thus the rules

used in this derivation also appear in g_a

.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 128 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Uni�
ation

Theorem g_simpl:

∀ g:
fg non_terminal terminal,

non_empty g →
∃ g':
fg (non_terminal' non_terminal) terminal,

g_equiv g' g ∧
has_no_ina

essible_symbols g' ∧
has_no_useless_symbols g' ∧
(produ
es_empty g → has_one_empty_rule g') ∧
(∼ produ
es_empty g → has_no_empty_rules g') ∧
has_no_unit_rules g' ∧
start_symbol_not_in_rhs g'.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 129 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Uni�
ation

Definition start_symbol_not_in_rhs (g:
fg non_terminal terminal):=

∀ left: non_terminal,
∀ right: sf,
rules g left right → ∼ In (inl (start_symbol g)) right.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 130 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Uni�
ation

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 131 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

De�nition

∀ G = (V,Σ, P, S), ∃ G′ = (V ′,Σ, P ′, S′) |

L(G) = L(G′) ∧ ∀ (α→G′ β) ∈ P ′, (β ∈ Σ) ∨ (β ∈ N ·N)

Valid only if G does not generate the empty string. If this is the
ase, then

the grammar that has this format, plus a single rule S′ → ǫ, is also

onsidered to be in the Chomsky Normal Form, and generates the original

language, in
luding the empty string.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 132 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Strategy

1

For every terminal symbol σ that appears in the right-hand side of a

rule r = α→G β1 · σ · β2 of G,
reate a new non-terminal symbol [σ],
a new rule [σ]→G′ σ and substitute σ for [σ] in r;

2

For every rule r = α→G N1N2 · · ·Nk of G, where Ni are all

non-terminals,
reate a new set of non-terminals and a new set of

rules su
h that:

α →G′ N1[N2 · · ·Nk],

[N2 · · ·Nk] →G′ N2[N3 · · ·Nk],

· · ·

[Nk−2Nk−1Nk] →G′ Nk−2[Nk−1Nk],

[Nk−1Nk] →G′ Nk−1Nk

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 133 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Example

As an example,
onsider G = ({S′,X, Y, Z, a, b, c}, {a, b, c}, P, S′) with P
equal to:

{S′ → XY Zd,

X → a,

Y → b,

Z → c, }

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 134 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Example

The CNF grammar G′
, equivalent to G, would then be the one with the

following set of rules:

{S′ → X[Y Zd],

[Y Zd] → Y [Zd],

[Zd] → Z[d],

[d] → d,

X → a,

Y → b,

Z → c, }

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 135 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Chomsky Normal Form

Strategy for g1:

1

Constru
t g2 (using g1) su
h that L(g2) = L(g1)− ǫ;

2

Constru
t g3 (using g1) su
h that L(g3) = L(g2) ∪ {ǫ}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 136 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Chomsky Normal Form

From g1 to g2:

◮
For the new set of non-terminals:

◮
One for every possibile (non-empty) sequen
e of terminal and

non-terminal symbols of g1: [...]

◮
For the new set of rules:

◮
One for every terminal symbol t of g1: [t]→ t;

◮
One for every rule X → t of g1: [X]→ t;

◮
One for every rule left→ s1s2β of g1: [left]→ [s1][s2β];

◮
One for every rule [left]→ [s1][s2s3β] of g2: [s2s3β]→ [s2][s3β]

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The mapped start symbol ([S1]).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 137 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Indu
tive non_terminal' (non_terminal terminal : Type): Type:=

| Lift_r: sf → non_terminal'.

Notation sf':= (list (non_terminal' + terminal)).

Notation term_lift:= ((terminal_lift non_terminal) terminal).

Definition symbol_lift (s: non_terminal + terminal)

: non_terminal' + terminal:=

mat
h s with

| inr t ⇒ inr t

| inl n ⇒ inl (Lift_r [inl n℄)

end.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 138 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Indu
tive g_
nf_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_
nf_t:

∀ t: terminal,

∀ left: non_terminal,
∀ s1 s2: sf,

rules g left (s1++[inr t℄++s2) →
g_
nf_rules g (Lift_r [inr t℄) [inr t℄

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 139 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

| Lift_
nf_1:

∀ left: non_terminal,
∀ t: terminal,

rules g left [inr t℄ →
g_
nf_rules g (Lift_r [inl left℄) [inr t℄

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 140 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

| Lift_
nf_2:

∀ left: non_terminal,
∀ s1 s2: symbol,

∀ beta: sf,
rules g left (s1 :: s2 :: beta) →
g_
nf_rules g (Lift_r [inl left℄)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: beta))℄

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 141 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

| Lift_
nf_3:

∀ left: sf,
∀ s1 s2 s3: symbol,

∀ beta: sf,
g_
nf_rules g (Lift_r left)

[inl (Lift_r [s1℄); inl (Lift_r (s2 :: s3 :: beta))℄ →
g_
nf_rules g (Lift_r (s2 :: s3 :: beta))

[inl (Lift_r [s2℄); inl (Lift_r (s3 :: beta))℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 142 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition g_
nf

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal' terminal :=

{| start_symbol:= Lift_r [inl (start_symbol g)℄;

rules:= g_
nf_rules g;

rules_finite:= g_
nf_finite g |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 143 / 207

Formalization of Context-Free Language Theory

Grammar Simpli�
ation

Chomsky Normal Form

From g1 to g3:

◮
For the new set of non-terminals:

◮
The same of g2.

◮
For the new set of rules:

◮
The same of g2;

◮
One extra rule: [S1]→ ǫ

◮
For the new grammar:

◮
The new set of non-terminals;

◮
The new set of rules;

◮
The mapped start symbol ([S1]).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 144 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Indu
tive g_
nf'_rules

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

: non_terminal' → sf' → Prop:=

| Lift_
nf'_all:

∀ left: non_terminal',
∀ right: sf',
g_
nf_rules g left right →
g_
nf'_rules g left right

| Lift_
nf'_new:

g_
nf'_rules g (start_symbol (g_
nf g)) [℄.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 145 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition g_
nf'

(non_terminal terminal : Type)

(g:
fg non_terminal terminal)

:
fg non_terminal' terminal:=

{| start_symbol:= start_symbol (g_
nf g);

rules:= g_
nf'_rules g;

rules_finite:= g_
nf'_finite g |}.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 146 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Theorem g_
nf_final:

∀ g:
fg non_terminal terminal,

(produ
es_empty g ∨ ∼ produ
es_empty g) ∧
(produ
es_non_empty g ∨ ∼ produ
es_non_empty g) →
∃ g':
fg non_terminal' terminal,

g_equiv g' g ∧
(is_
nf g' ∨ is_
nf_with_empty_rule g').

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 147 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition is_
nf_rule (left: non_terminal) (right: sf): Prop:=

(∃ s1 s2: non_terminal, right = [inl s1; inl s2℄) ∨
(∃ t: terminal, right = [inr t℄).

Definition is_
nf (g:
fg non_terminal terminal): Prop:=

∀ left: non_terminal,
∀ right: sf,
rules g left right → is_
nf_rule left right.

Definition is_
nf_with_empty_rule (g:
fg non_terminal terminal):

Prop:=

∀ left: non_terminal,
∀ right: sf,
rules g left right →
(left = (start_symbol g) ∧ right = [℄) ∨
is_
nf_rule left right.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 148 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

◮
The proof of this theorem requires that the original grammar is �rst

simpli�ed a

ording to the results dis
ussed before;

◮
For the ← part of g_equiv, the strategy adopted was to prove that

for every rule left→ right of (g), either left→ right is a rule of

g_
nf g or left⇒∗ right in g_
nf g.

◮
For the → part, that is, (s1 ⇒

∗

g_cnfg s2)→ (s1 ⇒
∗

g s2), it was

enough to note that the sentential forms of g are embedded in the

sentential forms of g_
nf g, spe
i�
ally in the arguments of the

onstru
tor Lift_r of non_terminal'. Thus, a simple extra
tion

me
hanism allows the impli
ation to be proved by indu
tion on the

stru
ture of the sentential form s1.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 149 / 207

Formalization of Context-Free Language Theory

Chomsky Normal Form

Example

Using the previous example, suppose we have: X[Y Zd]⇒∗

g_cnfg abcd,

whi
h would be represented in our formalization as:

derives (g_
nf g) [inl X℄ ++[inl (Lift_r ([inl Y; inl Z; inr d℄))℄

(map (·symbol_lift _ _) (map term_lift [inr a; inr b; inr
; inr d℄))

The extra
tion me
hanism, applied to this
ase, would yield:

derives g [inl X; inl Y; inl Z; inr d℄

(map term_lift [inr a; inr b; inr
; inr d℄)

whi
h is exa
tly the expe
ted result (XY Zd⇒∗

g abcd).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 150 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

General results on binary trees and their relation to CNF grammars:

◮
4,539 lines of Coq s
ript,

∼
18.9% of the total;

◮
84 lemmas;

◮
Supports the formalization of the Pumping Lemma.

◮
Based on the de�nition of btree.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 151 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Indu
tive btree (non_terminal terminal: Type): Type:=

| bnode_1: non_terminal→ terminal→ btree

| bnode_2: non_terminal→ btree → btree → btree.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 152 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Definition broot (t: btree): non_terminal:=

mat
h t with

| bnode_1 n t ⇒ n

| bnode_2 n t1 t2 ⇒ n

end.

Fixpoint bfrontier (t: btree): senten
e:=

mat
h t with

| bnode_1 n t ⇒ [t℄

| bnode_2 n t1 t2 ⇒ bfrontier t1 ++bfrontier t2

end.

Fixpoint bheight (t: btree): nat:=

mat
h t with

| bnode_1 n t ⇒ 1

| bnode_2 n t1 t2 ⇒ S (max (bheight t1) (bheight t2))

end.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 153 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Lemma length_bfrontier_ge:

∀ t: btree,

∀ i: nat,

length (bfrontier t) ≥ 2 ^ (i − 1) →
bheight t ≥ i.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 154 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Indu
tive subtree (t: btree): btree → Prop:=

| sub_br: ∀ tl tr: btree, ∀ n: non_terminal,

t = bnode_2 n tl tr →
subtree t tr

| sub_bl: ∀ tl tr: btree, ∀ n: non_terminal,

t = bnode_2 n tl tr →
subtree t tl

| sub_ir: ∀ tl tr t': btree, ∀ n: non_terminal,

subtree tr t' →
t = bnode_2 n tl tr →
subtree t t'

| sub_il: ∀ tl tr t': btree, ∀ n: non_terminal,

subtree tl t' →
t = bnode_2 n tl tr →
subtree t t'.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 155 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Lemma subtree_trans:

∀ t1 t2 t3: btree,

subtree t1 t2 →
subtree t2 t3 →
subtree t1 t3.

Lemma subtree_in
ludes:

∀ t1 t2: btree,

subtree t1 t2 →
∃ l r : senten
e,

bfrontier t1 = l ++bfrontier t2 ++r ∧ (l 6= [℄ ∨ r 6= [℄).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 156 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Indu
tive bpath (bt: btree): sf → Prop:=

| bp_1: ∀ n: non_terminal,

∀ t: terminal,

bt = (bnode_1 n t) → bpath bt [inl n; inr t℄

| bp_l: ∀ n: non_terminal,

∀ bt1 bt2: btree,

∀ p1: sf,
bt = bnode_2 n bt1 bt2 → bpath bt1 p1 → bpath bt ((inl n) :: p1)

| bp_r: ∀ n: non_terminal,

∀ bt1 bt2: btree,

∀ p2: sf,
bt = bnode_2 n bt1 bt2 → bpath bt2 p2 → bpath bt ((inl n) :: p2).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 157 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Lemma btree_ex_bpath:

∀ bt: btree,
∀ ntl: list non_terminal,

bheight bt ≥ length ntl + 1 →
bnts bt ntl →
∃ z: sf,

bpath bt z ∧
length z = bheight bt + 1 ∧
∃ u r: sf,

∃ t: terminal,

z = u ++r ++[inr t℄ ∧
length u ≥ 0 ∧
length r = length ntl + 1 ∧
(∀ s: symbol, In s (u ++r) → In s (map inl ntl)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 158 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Indu
tive bnts (bt: btree) (ntl: list non_terminal): Prop:=

| bn_1: ∀ n: non_terminal,

∀ t: terminal,

bt = (bnode_1 n t) → In n ntl → bnts bt ntl

| bn_2: ∀ n: non_terminal,

∀ bt1 bt2: btree,

bt = bnode_2 n bt1 bt2 →
In n ntl →
bnts bt1 ntl →
bnts bt2 ntl →
bnts bt ntl.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 159 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Indu
tive b
ode (bt: btree): list bool → Prop:=

| b
ode_0: ∀ n: non_terminal,
∀ t: terminal,

bt = (bnode_1 n t) → b
ode bt [℄

| b
ode_1: ∀ n: non_terminal,
∀ bt1 bt2: btree,

∀
1: list bool,

bt = bnode_2 n bt1 bt2 → b
ode bt1
1 → b
ode bt (false ::
1)

| b
ode_2: ∀ n: non_terminal,
∀ bt1 bt2: btree,

∀
2: list bool,

bt = bnode_2 n bt1 bt2 → b
ode bt2
2 → b
ode bt (true ::
2).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 160 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Lemma bpath_ex_b
ode:

∀ t: btree,

∀ p: sf,

bpath t p →
∃
: list bool,

b
ode t
 ∧
bpath_b
ode t p
.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 161 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Indu
tive bpath_b
ode (bt: btree): sf → (list bool) → Prop:=

| bb_0: ∀ n: non_terminal, ∀ t: terminal,
bt = (bnode_1 n t) → bpath_b
ode bt [inl n; inr t℄ [℄

| bb_1: ∀ n: non_terminal, ∀ bt1 bt2: btree,

∀
1: list bool, ∀ p1: sf,
bt = (bnode_2 n bt1 bt2) →
bpath bt1 p1 →
bpath_b
ode bt1 p1
1 →
bpath_b
ode bt ((inl n) :: p1) (false ::
1)

| bb_2: ∀ n: non_terminal, ∀ bt1 bt2: btree,

∀
2: list bool, ∀ p2: sf,
bt = (bnode_2 n bt1 bt2) →
bpath bt2 p2 →
bpath_b
ode bt2 p2
2 →
bpath_b
ode bt ((inl n) :: p2) (true ::
2).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 162 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Lemma b
ode_split:

∀ t: btree,

∀ p1 p2: sf,

∀
: list bool,

bpath_b
ode t (p1 ++p2)
 →
length p1 > 0 →
length p2 > 1 →
bheight t = length p1 + length p2 − 1 →
∃
1
2: list bool,

 =
1 ++
2 ∧
length
1 = length p1 ∧
∃ t2: btree,
∃ x y: senten
e,

bpath_b
ode t2 p2
2 ∧
btree_de
ompose t
1 = Some (x, t2, y) ∧
bheight t2 = length p2 − 1.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 163 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Fixpoint btree_de
ompose (bt: btree) (
: list bool):

option (senten
e * btree * senten
e):= ...

Fixpoint btree_subst (t1 t2: btree) (
: list bool):

option btree:= ...

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 164 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Indu
tive btree_
nf (g:
fg non_terminal' terminal)

(bt: btree non_terminal' terminal): Prop:=

| bt_
1: ∀ n: non_terminal',

∀ t: terminal,

rules g n [inr t℄ →
bt = (bnode_1 n t) →
btree_
nf g bt

| bt_
2: ∀ n n1 n2: non_terminal',

∀ bt1 bt2: btree _ _,

rules g n [inl n1; inl n2℄ →
btree_
nf g bt1 →
broot bt1 = n1 →
btree_
nf g bt2 →
broot bt2 = n2 →
bt = (bnode_2 n bt1 bt2) →
btree_
nf g bt.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 165 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Lemma derives_g_
nf_equiv_btree:

∀ g:
fg non_terminal' terminal,

∀ n: non_terminal',

∀ s: senten
e,

s 6= [℄ →
(is_
nf g ∨ is_
nf_with_empty_rule g) →
start_symbol_not_in_rhs g →
derives g [inl n℄ (map term_lift' s) →
∃ t: btree non_terminal' terminal,

btree_
nf g t ∧
broot t = n ∧
bfrontier t = s.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 166 / 207

Formalization of Context-Free Language Theory

Generi
 Binary Trees Library

Lemma btree_equiv_derives_g_
nf:

∀ g:
fg _ _,

∀ t: btree _ _,

btree_
nf g t →
derives g [inl (broot t)℄ (map inr (bfrontier t)).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 167 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

∀ L, (
� L)→ ∃ n |

∀ α, (α ∈ L) ∧ (|α| ≥ n)→

∃ u, v, w, x, y ∈ Σ∗ | (α = uvwxy) ∧ (|vx| ≥ 1) ∧ (|vwx| ≤ n)∧

∀ i, uviwxiy ∈ L

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 168 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

1

Sin
e L is de
lared to be a
ontext-free language (predi
ate
fl),

then there exists a
ontext-free grammar G su
h that L(G) = L;

2

Obtain G′
su
h that G′

is in Chomsky Normal Form and

L(G′) = L(G);

3

Take n as 2k, where k is the number of non-terminal symbols in G′
;

4

Consider an arbitrary senten
e α su
h that α ∈ L and |α| ≥ n;

5

Obtain a derivation tree t that represents the derivation of α in G′
;

6

Take a path that starts in the root of t and whose length is the height

of t plus 1 (maximum length);

7

Then, the height of t should be greater or equal than k + 1;

8

This means that the sele
ted path has at least k+ 2 symbols, being at

least k + 1 non-terminals and one (the last) a terminal symbol;

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 169 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 170 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

9

Sin
e G′
has only k non-terminal symbols, this means that this path

has at least one non-terminal symbol that appears at least two times

in it;

10

Name the dupli
ated symbols n1 and n2 (n1 = n2) and the

orresponding subtrees t1 and t2 (note that t2 is a subtree of t1 and t1
is a subtree of t);

11

It is then possible to prove that the height of t1 is greater than or

equal to 2, and less than or equal to 2k;

12

Also, that the height of t2 is greater than or equal to 1 and less than

or equal to 2k−1
;

13

This implies that the frontier of t
an be split into �ve parts:

u, v, w, x, y, where w is the frontier of t2 and vwx is the frontier of t1;

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 171 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 172 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

14

As a
onsequen
e of the heights of the
orresponding subtrees, it
an

be shown that |vx| ≥ 1 and |vwx| ≤ n;

15

If t1 is removed from t, and t2 is inserted in its pla
e, then we have a

new tree t0 that represents the derivation of string uv0wx0y = uwy;

16

If, instead, t1 is inserted in the pla
e where t2 lies originally, then we

have a tree t2 that represents the derivation of string uv2wx2y;

17

Repetition of the previous step generates all trees ti that represent the
derivation of the string uviwxiy, ∀i ≥ 2.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 173 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 174 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Lemma pumping_lemma:

∀ l: lang terminal,

(
ontains_empty l ∨ ∼
ontains_empty l) ∧
(
ontains_non_empty l ∨ ∼
ontains_non_empty l) →

fl l →
∃ n: nat,

∀ s: senten
e,

l s →
length s ≥ n →
∃ u v w x y: senten
e,

s = u ++v ++w ++x ++y ∧
length (v ++x) ≥ 1 ∧
length (u ++y) ≥ 1 ∧
length (v ++w ++x) ≤ n ∧
∀ i: nat, l (u ++(iter v i) ++w ++(iter x i) ++y).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 175 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
Find a grammar G that generates the input language L (this is a

dire
t
onsequen
e of the predi
ate is_
fl and
orresponds to step 1;

◮
Obtain a CNF grammar G′

that is equivalent to G (step 2), using

previous results;

◮ G is substituted for G′
and the value for n is de�ned as 2k (step 3)

where k is the length of the list of non-terminals of G′
(whi
h in turn

is obtained from the predi
ate rules_finite);

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 176 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
An arbitrary senten
e α of L(G′) that satis�es the required minimum

length n is
onsidered (step 4);

◮
Lemma derives_g_
nf_equiv_btree is then applied in order to

obtain a btree t that represents the derivation of α in G′
(step 5).

Naturally we have to ensure that α 6= ǫ, whi
h is true sin
e by

assumption |α| ≥ 2k;

◮
Obtain a path (a sequen
e of non-terminal symbols ended by a

terminal symbol) that has maximum length, that is, whose length is

equal to the height of t plus 1 (steps 6 and 7). This is a

omplished

by means of the de�nition bpath and the lemma btree_ex_bpath.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 177 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

The length of this path (whi
h is ≥ k + 2) allows one to infer that it must

ontain at least one non-terminal symbol that appears at least twi
e in it

(steps 8, 9 and 10). This result
omes from the appli
ation of the lemma

pigeon whi
h represents a list version of the well-known pigeonhole

prin
iple:

Lemma pigeon:

∀ A: Type,

∀ x y: list A,

(∀ e: A, In e x → In e y) →
length x = length y + 1→
∃ d: A,

∃ x1 x2 x3: list A,

x = x1 ++[d℄ ++x2 ++[d℄ ++x3.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 178 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
Sin
e a path is not unique in a tree, it is ne
essary to use some some

other representation that
an des
ribe this path uniquely, whi
h is

done by the predi
ate b
ode and the lemma bpath_ex_b
ode;

◮
On
e the path has been identi�ed with a repeated non-terminal

symbol, and a
orresponding b
ode has been assigned to it, lemma

b
ode_split is applied twi
e in order to obtain the two subtrees t1
and t2 that are asso
iated respe
tively to the �rst and se
ond repeated

non-terminals of t;

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 179 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
From this information it is then possible to extra
t most of the results

needed to prove the goal (steps 11, 12, 13 and 14), ex
ept for the

pumping
ondition. This has been obtained by an auxiliary lemma

pumping_aux, whi
h takes as hypothesis the fa
t that a tree t1 (with

frontier vwx) has a subtree t2 (with frontier w), both with the same

roots, and asserts the existen
e of an in�nite number of new trees

obtained by repeated substitution of t2 by t1 or simply t1 by t2, with
respe
tively frontiers viwxi, i ≥ 1 and w, or simply viwxi, i ≥ 0.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 180 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

Lemma pumping_aux:

∀ g:
fg _ _,

∀ t1 t2: btree (non_terminal' non_terminal terminal) _,

∀ n: _, ∀
1
2: list bool, ∀ v x: senten
e,

btree_de
ompose t1
1 = Some (v, t2, x) →
btree_
nf g t1 → broot t1 = n →
b
ode t1 (
1 ++
2) →
1 6= [℄ →
broot t2 = n → b
ode t2
2 →
(∀ i: nat,

∃ t': btree _ _,

btree_
nf g t' ∧
broot t' = n ∧
btree_de
ompose t' (iter
1 i) = Some (iter v i, t2, iter x i) ∧
b
ode t' (iter
1 i ++
2) ∧
get_nt_btree (iter
1 i) t' = Some n).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 181 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

◮
The proof
ontinues by showing that ea
h of these new trees
an be

ombined with tree t obtained before, thus representing strings

uviwxiy, i ≥ 0 as ne
essary (steps 15 and 16).

◮
Finally, we prove that ea
h of these trees is related to a derivation in

G′
, whi
h is a

omplished by lemma btree_equiv_produ
es_g_
nf

(step 17).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 182 / 207

Formalization of Context-Free Language Theory

Pumping Lemma

Finite languages

If L is �nite, then the PL is trivially true:

◮
Suppose L is �nite;

◮
Let G in CNF su
h that L = L(G);

◮
Let k be the number of non-terminals of G;

◮
We
laim there is no w ∈ L su
h that |w| ≥ 2k:

◮
If there is, then the PL asserts that L is i n�nite, whi
h
ontradi
ts the

hypothesis.

◮
Sin
e there is no w ∈ L su
h that |w| ≥ 2k, then the PL is trivially

true.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 183 / 207

Formalization of Context-Free Language Theory

Summary

◮
23,985 lines of Coq s
ript spread in 18 libraries;

◮
Eight auxiliary libraries
ontain 11,781 lines of Coq s
ript and

orrespond to almost half of the formalization (49.1%);

◮
Two of these auxiliary libraries (
fg.v and trees.v) sum, alone,

8,932 lines or more than one third (37.2%) of the total;

◮
533 lemmas and theorems, 83 de�nitions and 40 indu
tive de�nitions

among 1,067 de
lared names;

◮
Created and
ompiled with the Coq Proof Assistant, version 8.4pl4

(June 2014), using CoqIDE for Windows;

◮
Available for download at https://github.
om/mvmramos/v1;

◮
Compiled with the following
ommands under Cygwin:

◮

oq_makefile *.v > _makefile

◮
make -f _makefile

◮
make -f _makefile html

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 184 / 207

https://github.com/mvmramos/v1

Formalization of Context-Free Language Theory

Summary

Main lemmas

◮
Library
homsky.v:

◮
g_
nf_exists

◮
Library
losure.v:

◮
l_
lo_is_
fl

◮
l_
lo_
orre
t

◮
l_
lo_
orre
t_inv

◮
Library
on
atenation.v:

◮
l_
at_is_
fl

◮
l_
at_
orre
t

◮
l_
at_
orre
t_inv

◮
Library emptyrules.v:

◮
g_emp_
orre
t

◮
g_emp'_
orre
t

◮
Library ina

essible.v:

◮
g_a

_
orre
t

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 185 / 207

Formalization of Context-Free Language Theory

Summary

Main lemmas

◮
Library pumping:

◮
pumping_lemma

◮
pumping_lemma_v2

◮
Library simpli�
ation.v:

◮
g_simpl_exists_v1

◮
g_simpl_exists_v2

◮
Library union.v:

◮
l_uni_is_
fl

◮
l_uni_
orre
t

◮
l_uni_
orre
t_inv

◮
Library unitrules.v:

◮
g_unit_
orre
t

◮
Library useless.v:

◮
g_use_
orre
t

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 186 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Lessons

One needs to have a previous hands-on experien
e in a real world

formalization proje
t of some
omplexity and size, preferably in a

group willing to share its (supposedely) higher expertise and

experien
e, before fa
ing alone the
hallenges of a similar proje
t.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 187 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Lessons

Formalization proje
ts (as with any other proje
ts) should
ome

in in
reasing size and
omplexity, allowing the person (or team)

involved to be adequately prepared to
ope with the new

hallenges.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 188 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Lessons

Avoid formalizing a theory that you are not familiar with, unless

you already master the proof assistant and have some experien
e

with the formalization pro
ess. Otherwise, sti
k to a well-know

theory and redu
e the risks involved.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 189 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Lessons

The formalization of any theory should start with the shortest,

simpler and more independent lemmas and theorems, and pro
eed

towards the largest and more
omplex ones, bene�ting from

previous results.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 190 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Advi
es

◮
Make a deep review of the informal proof;

◮
Be sure of the statement to be proved;

◮
Use the
ohesion and
oupling prin
iples;

◮
Choose a naming poli
y;

◮
Develop a writing style;

◮
Be prepared for lots of trial and error;

◮
Do not underestimate the importan
e of the indu
tive de�nitions;

◮
Get rid of useless
ode.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 191 / 207

Formalization of Context-Free Language Theory

Dis
ussion

This formalization

◮
Set versus Prop;

◮
Finiteness of the
ontext-free grammar;

◮
Variants of indu
tive predi
ate de�nitions;

◮
Use of syntax trees in proofs;

◮
Statement and proof of the Pumping Lemma.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 192 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Pumping Lemma

∀ L, (
� L)→ ∃ n |

∀ α, (α ∈ L) ∧ (|α| ≥ n)→

∃ u, v, w, x, y ∈ Σ∗ | (α = uvwxy) ∧ (|vx| ≥ 1) ∧ (|vwx| ≤ n)∧

∀ i, uviwxiy ∈ L

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 193 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Pumping Lemma

∀ L, (
� L)→ ∃ n |

∀ α, (α ∈ L) ∧ (|α| ≥ n)→

∃ u, v, w, x, y ∈ Σ∗ | (α = uvwxy)∧(|vx| ≥ 1)∧ (|uy| ≥ 1) ∧(|vwx| ≤ n)∧

∀ i, uviwxiy ∈ L

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 194 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Pumping Lemma

A variant of the Pumping Lemma, using a smaller value of n, has also been

proved. This result uses n = 2k−1 + 1 instead of n = 2k (k is the number

of non-terminal symbols in the CNF grammar). Sin
e the proof needs a

binary tree of height at least k + 1 in order to pro
eed, and sin
e trees of

height i have as frontier strings of length maximum 2i−1
, it is possible to

onsider strings of length equal to or greater than 2k−1 + 1 (and not only

of length equal to or greater than 2k) in order to have the
orresponding

binary tree with height equal to or higher than k+1. This way, two slightly

di�erent proofs of the Pumping Lemma have been produ
ed: one with

n = 2k (pumping_lemma) and the other with n = 2k−1 + 1
(pumping_lemma_v2).

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 195 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Pumping Lemma

The statement of (pumping_lemma_v2) be
omes:

∀ L, (
� L)→ ∃ n |

∀ α, (α ∈ L) ∧ (|α| ≥ n)→

∃ u, v, w, x, y ∈ Σ∗ | (α = uvwxy) ∧ (|vx| ≥ 1) ∧ (|vwx| ≤ (n− 1) ∗ 2) ∧

∀ i, uviwxiy ∈ L

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 196 / 207

Formalization of Context-Free Language Theory

Dis
ussion

Comparison

Norrish & Barthwal Firsov & Uustalu Ramos

Proof assistant HOL4 Agda Coq

Closure X × X

Simpli�
ation X empty and unit rules X

CNF X X X

GNF X × ×
PDA X × ×

PL X × X

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 197 / 207

Con
lusions and Further Work

A
hievements

◮
A set of libraries that formalizes an important subset of
ontext-free

language theory;

◮
Expertise on intera
tive theorem proving.

◮
Pioneering;

◮
Reasoning about
ontext-free language theory;

◮
Learning and experimenting in an edu
ational environment;

◮
New proje
ts and theories.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 198 / 207

Con
lusions and Further Work

Contributions

Pioneering

◮
Bring formalization into an area whi
h has relied so far mostly in

informal arguments;

◮
First formalization of a
oherent and
omplete subset of
ontext-free

language theory in the Coq proof assistant;

◮
Se
ond formalization ever (in any proof assistant) of the Pumping

Lemma for
ontext-free languages;

◮
Se
ond most
omprehensive formalization of an important subset of

the
ontext-free language theory in any proof assistant.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 199 / 207

Con
lusions and Further Work

Contributions

Reasoning about
ontext-free language theory

◮
The present formalization
an be very helpful to get insight into the

nature and behaviour of the obje
ts of
ontext-free language theory, as

well on the proofs of their properties;

◮
Also, when developing representations for new and similar devi
es, and

proofs for new results of the theory;

◮
Finally, the formalization represents the guarantee that the proofs are

orre
t and that the remaining errors in the informal demonstrations,

if any,
ould �nally and de�nitely be reviewed and
orre
ted.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 200 / 207

Con
lusions and Further Work

Contributions

Learning and experimenting in an edu
ational environment

Tea
hers, students and professionals
an use the formalization to learn and

experiment with the obje
ts and
on
epts of
ontext-free language theory

in a software laboratory, where further pra
ti
al observations and

developments
ould be done independently. Also, the material
ould be

deployed as the basis for a
ourse on the theoreti
al foundations of

omputing, exploring simultaneously or independently:

◮
Language theory;

◮
Logi
;

◮
Proof theory;

◮
Type theory;

◮
Models of
omputation;

◮
Formal mathemati
s;

◮
Intera
tive theorem provers and Coq.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 201 / 207

Con
lusions and Further Work

Contributions

Expertise and knowledge

◮
The essen
e of formalization
omes into light with the

a

omplishment of this proje
t;

◮
This enables the appli
ation of similar prin
iples to the formalization

of other theories, and allow for the multipli
ation of the knowledge

among students and
olleagues;

◮
Considering the growing interest in formalization in re
ent years, this

proje
t
an be
onsidered as a good te
hni
al preparation for dealing

with the
hallenges of theory and
omputer program developments of

the future.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 202 / 207

Con
lusions and Further Work

Further Work

Various possibilities,
onsidered in three di�erent groups:

◮
New devi
es and results;

◮
Code extra
tion;

◮
General enhan
ements.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 203 / 207

Con
lusions and Further Work

Further Work

New devi
es and results

◮
Pushdown automata, in
luding: de�nition, equivalen
e of pushdown

automata and
ontext-free grammars; equivalen
e of empty sta
k and

�nal state a

eptan
e
riteria; non-equivalen
e of the deterministi

and the non-deterministi
 models;

◮
Elimination of left re
ursion in
ontext-free grammars and Greiba
h

Normal Form;

◮
Derivation trees, ambiguity and inherent ambiguity;

◮
De
idable problems for
ontext-free languages (membership,

emptyness and �niteness for example);

◮
Odgen's Lemma.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 204 / 207

Con
lusions and Further Work

Further Work

Code extra
tion

◮
Add
omputational
ontent;

◮
Extra
t
erti�ed programs for:

◮
Closure properties;

◮
Grammar simpli�
ation;

◮
CNF.

◮
Certi�ed parser generator.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 205 / 207

Con
lusions and Further Work

Further Work

General enhan
ements

◮
Creating a naming poli
y that
an be used rename the various obje
ts

and better identify their nature and intended use;

◮
Eliminating unne
essary de�nitions and lemmas;

◮
Making a better grouping of related objet
s and thus a better

stru
turing of the whole formalization;

◮
Simplifying some proof s
ripts;

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 206 / 207

Con
lusions and Further Work

Further Work

General enhan
ements

◮
Commenting the s
ripts in order to provide a better understanding of

their nature.

◮
Substitution of the
lassi
al logi
 proof of the pigeonhole prin
iple for

a
onstru
tive version;

◮
Rewriting of the
ontents of the trees.v library, in order to allow that

all de�nitions and results be parametrized on any two types, one for

the leafs and the other for the internal nodes of a btree;

◮
Experimenting and rewriting in SSRe�e
t.

Mar
us Ramos (UFPE) Language Formalization January 18th, 2016 207 / 207

	Introduction
	A Sampler of Formally Checked Projects
	Related Work
	Formalization of Context-Free Language Theory
	Conclusions and Further Work

