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Introduction

Introduction

Mathematical formalization

+
Context-free language theory

Formalization of context-free language theory
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Introduction

Introduction

Mathematical formalization

v

Machine assisted proof construction;

v

Machine verified proofs;

v

Speed, reliability and reuse;

v

Mathematics and computer science;

v

Interactive theorem proving;

v

Certified hardware and software development.
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Introduction

Introduction

Context-free language theory

» Language design, analysis and implementation;
» Computation theory;

» Fundamental in computing curricula and computation practice.
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Introduction

Introduction
Objectives

v

Formalization of an important subset of context-free language theory;

v

Using the Coq proof assistant (type theory).

v

Research on:

» Logics and natural deduction;
Lambda calculus;
Type theory;
Mathematical formalization;
Interactive theorem proving.

vV vy VvYyy

Build a set of libraries that can be used in:

v

» Education;
» Certified software construction.

v

Create and develop a culture of mathematical formalization.
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Introduction

Introduction
History

Background:
» 2011-2012: classes on lambda calculus, set theory and logic;
» 2013-2015: self study of proof theory, type theory and Coq;
Formalization:
» July 2013 until April 2014: regular languages, Coq as a functional
programming language;
» April 2014 until August 2015: context-free languages, focus on
lemmas and theorems;
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Introduction

Introduction
History

Presentations:
» 02/2014: WTA/EPUSP/USP;
» 02/2014: Thesis proposal examination;
» 09/2014: LSFA'14;
» 07/2015: DCC/FC/UP;
» 08/2015: LSFA'15.
Thesis writing:
» September 2015 until December 2015.
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A Sampler of Formally Checked Projects

A Sampler of Formally Checked Projects

Mathematical formalization is a mature activity:

» Use over the years;

v

Diversity of proof assistants and underlying theories;

v

Development of proof assistants technology;

v

Size, complexity and importance of many different projects;

v

Theoretical and technologically oriented;

v

Academy and industry oriented;

v

A clear trend;

v

A point of no return.
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A Sampler of Formally Checked Projects

A Sampler of Formally Checked Projects

Some remarkable projects:

>

>

>

Four Color Theorem;
0Odd Order Theorem:;

Kepler Conjecture;

Homotopy Type Theory and Univalent Foundations of Mathematics;

Compiler Certification;
Microkernel Certification;

Digital Security Certification.
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Related Work

Related Work

» Language and automata theory has been subject of formalization since
the mid-1980s, when Kreitz used the Nuprl proof assistant to prove
results about deterministic finite automata and the pumping lemma
for regular languages;

» Since then, the theory of regular languages has been the subject of
intense formalization by various researchers using many different proof
assistants;

» The formalization of context-free language theory, on the other hand,
is more recent and includes fewer accomplishments, mostly
concentrated in certified parser generation.
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Related Work

Related Work

Context-free languages

> A recent and important reference is the work of Christian Doczkal,
Jan-Oliver Kaiser and Gert Smolka;

» Following the structure of the book by Kozen, they did a fairly
complete formalization of regular languages theory;

> All the development was done in Coq, is only 1,400 lines long, and
benefited from the use of the SSReflect Coq plug-in.
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Related Work

Related Work

Context-free languages

» Most of the extensive effort, however, started in 2010 and has been
devoted to the certification and validation of parser generators;

» On the more theoretical side, Norrish and Barthwal published in 2010
on general context-free language theory formalization using the HOL4
proof assistant, including:

» The existence of normal forms for grammars;

» Pushdown automata,

» Closure properties and

» A proof of the Pumping Lemma for context-free languages.

» In 2015, Firsov and Uustalu proved the existence of a Chomsky
Normal Form grammar for every general context-free grammar, using
the Agda proof assistant.
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Related Work

Summary

Related Work

Norrish & Barthwal2010

Firsov & Uustalu

Proof assistant HOL4 Agda

Closure v X
Simplification v only empty and unit rules
CNF v v

GNF v X

PDA v X

PL v X
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Related Work

Related Work

Motivation

>

Until 2015, the only comprehensive work is the one by Norrish and
Barthwal (HOL4 in 2010);

The Pumping Lemma has not been published;

v

v

Firsov and Uustalu add a more limited implementation (Agda in 2015);

v

No formalization in Coq.

v

Formalization of the PL in HOL4 discovered only in november 2015.
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Formalization of Context-Free Language Theory

Formalized Results

>

Closure properties of context-free languages and grammars;

v

Context-free grammar simplification;
Chomsky Normal Form (CNF);

Pumping Lemma (PL) for context-free languages.

v

v

PL depends on CNF, which in turn depends on grammar simplification.
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Formalization of Context-Free Language Theory

Phases

© Selection of an underlying formal logic to express the theory and then
a tool that supports it adequately;

© Representation of the objects of the universe of discourse in this logic;

© Implementation of a set of basic transformations and mappings over
these objects;

@ Statement of the lemmas and theorems that describe the properties
and the behaviour of these objects, and establish a consistent and
complete theory;

© Formal derivation of proofs of these lemmas and theorems, leading to
proof objects that can confirm their validity.
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Formalization of Context-Free Language Theory

Definitions

v

Symbols (including terminal and non-terminal);

v

Sentential forms (strings of terminal and non-terminal symbols);

v

Sentences (strings of terminal symbols);

v

Context-free grammars;

v

Derivations.
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Formalization of Context-Free Language Theory

Sequence

© General purpose libraries;
© Closure properties;

© Grammar simplification — Chomsky Normal Form — Pumping
Lemma.
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Formalization of Context-Free Language Theory

Support

» Basic lemmas on arithmetic, lists and logic;
» Basic lemmas on context-free languages and grammars;

» Basic lemmas on binary trees and their relation to CNF grammars;
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Formalization of Context-Free Language Theory

Basic Definitions

Grammars

Terminal symbols as a type. Example:

Inductive nt: Type:=

Non-terminal symbols as a type. Example:

Inductive nt: Type:=
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Formalization of Context-Free Language Theory

Basic Definitions

Grammars

Variables and notations:

Variables non_terminal terminal: Type.

Notation sf := (list (non_terminal + terminal)).
Notation sentence := (list terminal).

Notation nlist:= (1list non_terminal).

Examples:

[inr a; inr a; inr b; inr c]
[inr a; inl X; inl Y; inr D]
[inl Z; inl Z; inl X]
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Formalization of Context-Free Language Theory

Basic Definitions

Grammars

(V.X,P,5S)

Record cfg (non_terminal terminal : Type): Type:= {
start_symbol: non_terminal,
rules: non_terminal — sf — Prop;
rules_finite:
3 n: nat,
3 ntl: nlist,
3 t1: tlist,
rules_finite_def start_symbol rules n ntl tl }.
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Formalization of Context-Free Language Theory

Basic Definitions

Grammars

Definition rules_finite_def
(non_terminal terminal : Type)
(ss: non_terminal)
(rules: non_terminal — sf — Prop)
(n: nat)
(ntl: list non_terminal)
(t1l: list terminal) :=
In ss ntl A
(V left: non_terminal,
V right: list (non_terminal + terminal),
rules left right —
length right <n A
In left ntl A
(V s : non_terminal, In (inl s) right — In s ntl) A
(V s: terminal, In (inr s) right — In s tl)).
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Formalization of Context-Free Language Theory

Basic Definitions

Grammars

Example:
G=({S5,A,B,a,b},{a,b},{S — aS", S — b}, 5

that generates language a*b:

Inductive nt: Type:=|S' | A| B.

Inductive t: Type:=| a | b.

Inductive rs: nt — list (nt + t) — Prop:=
rl: rs S’ [inr a; inl S

| r2: rs 8’ [inr b].

Marcus Ramos (UFPE) Language Formalization January 18th, 2016 25 / 207



Formalization of Context-Free Language Theory

Basic Definitions

Grammars

Lemma rs_finite:

3 n: nat,

d ntl: nlist,

3 tl: tlist,

In S ntl A

V left: non_terminal,

vV right: sf,

rsl left right —

(length right <mn) A

(In left ntl) A

(V s:non_terminal, In (inl s) right — In s ntl) A
(V s: terminal, In (inr s) right — In s tl).
Proof.

admit.

Qed.
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Formalization of Context-Free Language Theory

Basic Definitions

Grammars

Definition g: cfg nt t:= {|
start_symbol:= S’;

rules:= rs;

rules_finite:= rs_finite |}

Marcus Ramos (UFPE)
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Formalization of Context-Free Language Theory

Basic Definitions

Derivations

S1 =* ED)

Inductive derives

(non_terminal terminal : Type)

(g : cfgnon_terminal terminal)
sf — sf — Prop =

| derives_refl:
Vs : sf,
derives g s s

| derives_step:
vV (sl s2s3: sf)
vV (left : non_terminal)
V (right : sf),
derives g s1 (s2 ++inl left :: s3) —
rules g left right — derives g s1 (s2 ++right ++s3)
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Formalization of Context-Free Language Theory

Basic Definitions

Derivations

derives

S=>a=>m=> ..o 1=>0, =>w
gene},ates

produces

Definition generates (g: cfg) (s: sf): Prop:=
derives g [inl (start_symbol g)] s.

Definition produces (g: cfg) (s: sentence): Prop:=
generates g (map terminal_lift s).
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Formalization of Context-Free Language Theory

Basic Definitions

Derivations

Example:

Lemma derives_g_aab:

derives g [inl S'] [inr a; inr a; inr b).

Proof.

apply derives_step with (s2:=[inr a; inr a])(left:=S')(right:=[inr b]).
apply derives_step with (s2:=[inr a])(left:=S’)(right:=[inr a;inl S']).
apply derives_start with (left:=S")(right:=[inr a;inl S']).

apply ri.

apply ri.

apply r2.

Qed.
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Formalization of Context-Free Language Theory

Basic Definitions

Derivations

Examples:
» derives g [inr a; inl S’] [inr a; inr b];
» generates g [inl S’] [inr a; inl S’] and

» produces g [inl S’] [inr a; inr b].
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Formalization of Context-Free Language Theory

Basic Definitions

Derivations

Definition produces_empty
(g: cfgnon_terminal terminal): Prop:=
produces g [].

Definition produces_non_empty

(g: cfgnon_terminal terminal): Prop:=
3 s: sentence, produces g s As # [|.
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Formalization of Context-Free Language Theory

Basic Definitions

Derivations

Definition appears (g: cfg) (s: non_terminal + terminal): Prop:=
match s with

| inl n = 3 left: non_terminal,

J right: sf,

rules g left right A ((n=1eft) V (In (inl n) right))
| inr t = J left: non_terminal,

J right: sf,

rules g left right A In (inr t) right
end.
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Formalization of Context-Free Language Theory

Basic Definitions

Derivations

To map a sentence (sentence) into a sentential form (sf):

Definition terminal_lift (t: terminal):
non_terminal + terminal:=
inr t.
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Formalization of Context-Free Language Theory

Basic Definitions

Derivations

Two grammars g7 (with start symbol S1) and go (with start symbol Ss) are
equivalent (denoted g; = g2) if they generate the same language, that is,
Vs, (S1 =3, 5) <> (S2 =, s). This is represented in our formalization in
Coq by the predicate g_equiv:

Definition g_equiv

(non_terminall non_terminal2 terminal : Type)
(gl: cfg non_terminall terminal)

(g2: cfg non_terminal2 terminal): Prop:=

V s: sentence,

produces gl s <> produces g2 s.
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Formalization of Context-Free Language Theory

Basic Definitions

Languages

L(G) ={w|S =} w}

Definition lang (terminal: Type):= sentence — Prop.

Definition lang_of_g (g: cfg): lang :=
fun w: sentence = produces g w.

Definition lang_eq (1 k: lang) :=
Vw lwrkw

Infix "==" := lang_eq (at level 80).
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Formalization of Context-Free Language Theory

Basic Definitions

Languages

Definition cfl (terminal: Type) (1: lang terminal): Prop:=
J non_terminal: Type,

J g cfgnon_terminal terminal,

1 == lang _of_gg.

Definition contains_empty (1: lang): Prop:=

1.

Definition contains_non_empty (1: lang): Prop:=
J w: sentence,

lwAw#]]
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Formalization of Context-Free Language Theory

Generic CFG Library

General results on context-free gramars and languages:
» 4,393 lines of Coq script, ~18.3% of the total;

105 lemmas and theorems;

v

v

Alternative definitions for predicate derives;

v

Supports the whole formalization;

» Some examples follow.
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Formalization of Context-Free Language Theory

Generic CFG Library

> Derivation transitivity:
Vg, 51,52, 83, (81 = 52) = (82 = 83) = (51 = 83)
» Context independence:
Vg,51,52,8,5, (51 =) 82) = (s-51-8 =, 553 5)
» Concatenation:
Vg, s1, 52,83, 84, (51 =5 52) = (83 =7 54) — (81 83 =7 S2- 54)
» Derivation independence: Vg, s1, s2, S3, (51 - 2 = s3) —
351,85 | (83 = 571 - 85) A (51 = 1) A (52 = s3)
» Derivation of a string of terminals from a non-terminal symbol:
Vg, s1,82,n,w, (51182 =5 w) = Fw'[(n =7 w)
> Direct or indirect derivation: Vg,n,w, (n =5 w) — (n —,
w) V (3 right|n —4 right A right =7 w)
» Grammar equivalence transitivity:
V91,92, 93, (91 = 92) A (92 = 93) = (91 = g3)
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Formalization of Context-Free Language Theory

Generic CFG Library

Alternative definitions for predicate derives:
» Used to ease some proofs;
» Equivalence has been proved;

» Standard derives has been used in statements.
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Formalization of Context-Free Language Theory

Generic CFG Library

Inductive derives2

(non_terminal terminal : Type)

(g : cfgnon_terminal terminal)
sf — sf — Prop =

| derives2_refl:
Vs : sf,
derives2 g s s

| derives2_step:
¥ (sl s2s3: sf)
vV (left : non_terminal)
V (right : sf),
derives2 g (sl ++right ++s2) s3 —
rules g left right —
derives2 g (sl ++inl left :: s2) s3.
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Formalization of Context-Free Language Theory

Generic CFG Library

Inductive derives3
(g: cfg): non_terminal — sentence — Prop :=
| derives3_rule:
V (n: non_terminal) (1t: sentence),
rules g n (map inr 1t) — derives3 gn 1t
| derives3_step:
V (n: non_terminal) (1ltnt: sf) (1t: list terminal),
rules g n 1tnt — derives3_aux g 1tnt 1t — derives3 gn 1t
with derives3_aux (g: cfg): sf — sentence — Prop :=
| derives3_aux_empty:
derives3_aux g [] [|
| derives3_aux_t:
V (t: terminal) (1tnt: sf) (1t: sentence),
derives3_aux g ltnt 1t — derives3_aux g (inr t :: 1tnt) (t :: 1t)
| derives3_aux_nt:
¥ (n: non_terminal) (1t 1t’: sentence) (1ltnt: sf),
derives3_aux g ltnt 1t — derives3 gn 1t' —

derives3_aux g (inl n :: 1tnt) (1t’ ++1t).
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Formalization of Context-Free Language Theory

Generic CFG Library

Inductive derives6

(non_terminal terminal : Type)

(g : cfgnon_terminal terminal)

: nat — sf — sf — Prop :=

| derives6_0:
Vs : sf,
derives6 g0 s s

| derives6_sum:
vV (left : non_terminal)
V (right : sf)
vV (i : nat)
V (sl s2s3: sf),
rules g left right —
derives6 g i (s1 ++right ++s2) s3 —
derives6 g (S i) (s1 ++[inl left] ++s2) s3.
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Formalization of Context-Free Language Theory

Generic CFG Library

The equivalence of definitions derives, derives2, derives3 and
derives6 has been proved:

» derives_equiv_derives?2, for
derives g sl s2 <» derives2 g sl s2;

» derives_equiv_derives3, for
derives g n (map inr s) <> derives3 g n s;

» derives_equiv_derives6, for
derives g sl s2 <+ dn, derives6 g n sl s2.
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Formalization of Context-Free Language Theory

Method

Most of the work share a common objective: to construct a new grammar
from an existing one (or two existing ones). This is the case of:
» Closure properties:
» Union;
» Concatenation;
> Kleene star;
» Grammar simplification:

Elimination of empty rules;

» Elimination of unit rules;

» Elimination of useless symbols;

» Elimination of inaccessible symbols;

v

» Chomsky Normal Form (CNF).

Thus, a common method to be used in all these cases has been devised.

Marcus Ramos (UFPE) Language Formalization January 18th, 2016 45 / 207



Formalization of Context-Free Language Theory

Method

© Depending on the case, define a new type of non-terminal symbols;
this will be important, for example, when we want to guarantee that
the start symbol of the grammar does not appear in the right-hand
side of any rule or when we have to construct new non-terminals from
the existing ones;

© Inductively define the rules of the new grammar, in a way that it
allows the construction of the proofs that the resulting grammar has
the required properties; these new rules will likely make use of the new
non-terminal symbols described above;
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Formalization of Context-Free Language Theory

Method

© Define the new grammar by using the new non-terminal symbols and
the new rules; define the new start symbol (which might be a new
symbol or an existing one) and build a proof of the finiteness of the
set of rules for this new grammar;

© State and prove all the lemmas and theorems that will assert that the
newly defined grammar has the desired properties;

© Consolidate the results within the same scope and finally with the
previously obtained results.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Given two arbitrary context-free grammars g; and gs, the following
definitions are used to construct g3 such that L(gs) = L(g1) U L(g2) (that
is, the language generated by g3 is the union of the languages generated by

g1 and g9).
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Formalization of Context-Free Language Theory

Closure Properties

Union

» For the new set of non-terminals:

» All the non-terminals of g;;

» All the non-terminals of go;

> A fresh new non-terminal symbol (.S3).
» For the new set of rules:

> All the rules of g1;

> All the rules of go;

» Two new rules: S3 — S7 and S3 — Ss.
» For the new grammar:

» The new set of non-terminals;

» The new set of rules;

» The new non-terminal (S3) as the start symbol.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Inductive g_uni_nt (non_terminal_1 non_terminal_2: Type): Type:=
| Start_uni

| Transfl_uni_nt: non_terminal_1 — g_uni_nt

| Transf2_uni_nt: non_terminal_2 — g_uni_nt.

Notation sfl:= (list (non_terminal_1 + terminal)).
Notation sf2:= (list (non_terminal_2 + terminal)).
Notation sfu:= (list (g_uni_nt + terminal)).
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Formalization of Context-Free Language Theory

Closure Properties

Union

Definition g_uni_sf_liftl (c: non_terminal_1 + terminal)
g_uni_nt + terminal:=
match c with
| inl nt = inl (Transfl_uni_nt nt)
| inrt = inrt
end.
Definition g_uni_sf_1ift2 (c: non_terminal_2 + terminal)
: g_uni_nt + terminal:=
match c with
| inl nt = inl (Transf2_uni_nt nt)
| inrt = inrt
end.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Inductive g_uni_rules
(non_terminal_1 non_terminal_2 terminal : Type)
(gl: cfg non_terminal_1 terminal)
(g2: cfg non_terminal_2 terminal): g_uni_nt — sfu — Prop :=
| Startl_uni:
g_uni_rules gl g2 Start_uni [inl (Transfl_uni_nt (start_symbol gi))]
| Start2_uni:
g_uni_rules gl g2 Start_uni [inl (Transf2_uni_nt (start_symbol g2))]
| Liftl_uni:
V nt: non_terminal_1, V s: sf1,
rules gl nt s —
g_uni_rules gl g2 (Transfl_uni_nt nt) (map g_uni_sf_liftl s)
| Lift2_uni:
V nt: non_terminal_2, V s: sf2,
rules g2 nt s —
g_uni_rules gl g2 (Transf2_uni_nt nt) (map g_uni_sf_1ift2 s).
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Formalization of Context-Free Language Theory

Closure Properties

Union

Definition g_uni
(non_terminal_1 non_terminal_2 terminal : Type)
(gl: cfg non_terminal_1 terminal)
(g2: cfg non_terminal_2 terminal)
(cfg g_uni_nt terminal):=
{| start_symbol:= Start_uni;
rules:= g_uni_rules gl g2;
rules_finite:= g_uni_finite gl g2 |}.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Consider grammars G and Gos:
> Gl = ({Sl,Xl,a, b}, {CL, b}, {Sl — CLXl,Xl — aX1 ‘ b},Sl);
> G2 = ({SQ,XQ, a, b}, {CL, b}, {SQ — CLXQ,XQ — (IXQ ‘ C}, SQ)
Then, the new grammar G5 that generates L(G;) U L(G2) can be
expressed as:

G3 = ({53? Slv SQle’X% a, b’ C}’ {(I, b’ C}’P37 S3)

with P5 containing the following rules:

53 — Sl | S2
ST — aXy
X1 — CLXl | b
SQ — CLXQ

Xo — aXyle
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Formalization of Context-Free Language Theory

Closure Properties

Union

Inductive non_terminall: Type:=
| s1
| X1

Inductive non_terminal2: Type:=
| 2
| x2.

Inductive terminal: Type:=
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Formalization of Context-Free Language Theory

Closure Properties

Union

Inductive rsi:

non_terminall — list (non_terminall + terminal) — Prop:=
| ri1l: rs1 S1 [inr a; inl X1]

| r12: rs1 X1 [inr a; inl X1]

| r13: rsi1 X1 [inr b].

Definition gl: cfg non_terminall terminal := {|
start_symbol:= S1,;

rules:= rsli;

rules_finite:= rsl_finite |}.

Marcus Ramos (UFPE) Language Formalization January 18th, 2016 56 / 207



Formalization of Context-Free Language Theory

Closure Properties

Union

Inductive rs2:

non_terminal2 — list (non_terminal2 + terminal) — Prop:=
| r21: rs2 S2 [inr a; inl X2]

| r22: rs2 X2 [inr a; inl X2]

| r23: rs2 X2 [inr c].

Definition g2: cfg non_terminal2 terminal := {|
start_symbol:= S2;

rules:= rs2;

rules_finite:= rs2_finite |}.
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Formalization of Context-Free Language Theory

Closure Properties

Union

Definition g3:= g_uni gl g2.
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Formalization of Context-Free Language Theory

Closure Properties

Concatenation

Given two arbitrary context-free grammars g; and gs, the following
definitions are used to construct g3 such that L(g3) = L(g1) - L(g2) (that
is, the language generated by g3 is the concatenation of the languages
generated by g; and ¢).
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Formalization of Context-Free Language Theory

Closure Properties

Concatenation

» For the new set of non-terminals:

» All the non-terminals of g;;

» All the non-terminals of go;

> A fresh new non-terminal symbol (.S3).
» For the new set of rules:

> All the rules of g1;

> All the rules of go;

» One new rule: S35 — S155.
» For the new grammar:

» The new set of non-terminals;

» The new set of rules;

» The new non-terminal (S3) as the start symbol.
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Formalization of Context-Free Language Theory

Closure Properties

Concatenation

Inductive g_cat_nt (non_terminal_1 non_terminal_2 terminal : Type):
Type:=

| Start_cat

| Transfl_cat_nt: non_terminal_1 — g_cat_nt

| Transf2_cat_nt: non_terminal_2 — g_cat_nt.

Notation sfl:= (list (non_terminal_1 + terminal)).

Notation sf2:= (list (non_terminal_2 + terminal)).
Notation sfc:= (list (g_cat_nt + terminal)).
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Formalization of Context-Free Language Theory

Closure Properties

Concatenation

Definition g_cat_sf_liftl (c: non_terminal_1 + terminal):
g_cat_nt + terminal:=

match c with

| inl nt = inl (Transfl_cat_nt nt)

| inrt = inrt

end.

Definition g_cat_sf_lift2 (c: non_terminal_2 + terminal):
g_cat_nt + terminal:=

match c with

| inl nt = inl (Transf2_cat_nt nt)

| inrt = inrt

end.
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Formalization of Context-Free Language Theory

Closure Properties

Concatenation

Inductive g_cat_rules
(non_terminal_1 non_terminal_2 terminal : Type)
(gl: cfg non_terminal_1 terminal)
(g2: cfg non_terminal_2 terminal): g_cat_nt — sfc — Prop :=
| New_cat:
g_cat_rules gl g2 Start_cat
([inl (Transfl_cat_nt (start_symbol g1))]++
[inl (Transf2_cat_nt (start_symbol g2))])
| Liftl_cat:
VY nt s,
rules gl nt s —
g_cat_rules gl g2 (Transfl_cat_nt nt) (map g_cat_sf_liftl s)
| Lift2_cat:
VY nt s,
rules g2 nt s —
g_cat_rules gl g2 (Transf2_cat_nt nt) (map g_cat_sf_1ift2 s).
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Formalization of Context-Free Language Theory

Closure Properties

Concatenation

Definition g_cat
(non_terminal_1 non_terminal_2 terminal : Type)
(gl: cfg non_terminal_1 terminal)
(g2: cfg non_terminal_2 terminal)
(cfg g_cat_nt terminal):=
{| start_symbol:= Start_cat;
rules:= g_cat_rules gl g2;
rules_finite:= g_cat_finite gl g2 |}.
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Formalization of Context-Free Language Theory

Closure Properties

Concatenation

Consider grammars G and Gos:
> Gl = ({Sl,Xl,a, b}, {CL, b}, {Sl — CLXl,Xl — aX1 ‘ b},Sl);
> G2 = ({SQ,XQ, a, b}, {CL, b}, {SQ — CLXQ,XQ — (IXQ ‘ C}, SQ)
Then, the new grammar ('3 that generates L(G;1) - L(Gz) can be
expressed as:

G3 = ({53? Slv SQle’X% a, b’ C}’ {(I, b’ C}’P37 S3)

with P5 containing the following rules:

Sy — 515,
ST — aXy
X1 — aXy|b
Sy — aXsy

Xo — aXyle
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Formalization of Context-Free Language Theory

Closure Properties

Concatenation

Definition g3:= g_cat gl g2.
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Given an arbitrary context-free grammar g, the following definitions are
used to construct gs such that L(gs) = (L(g1))* (that is, the language
generated by g9 is the reflexive and transitive concatenation (Kleene star)
of the language generated by ¢1).
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

» For the new set of non-terminals:

» All the non-terminals of g;;

> A fresh new non-terminal symbol (.S2).
» For the new set of rules:

> All the rules of g1;

» Two new rules: Sy — 5957 and Sy — €.
» For the new grammar:

» The new set of non-terminals;
» The new set of rules;
» The new non-terminal (S3) as the start symbol.
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Inductive g_clo_nt (non_terminal : Type): Type :=
| Start_clo:g_clo_nt

| Transf_clo_nt : non_terminal — g_clo_nt.

Notation sfc:= (list (g_clo_nt + terminal)).
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Definition g_clo_sf_lift (c: non_terminal + terminal):
g_clo_nt + terminal:=

match c with

| inl nt = inl (Transf_clo_nt nt)

| inrt = inrt

end.
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Inductive g_clo_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
. g_clo_nt — sfc — Prop :=
| Newl_clo:
g_clo_rules g Start_clo ([inl Start_clo] ++
[inl (Transf_clo_nt (start_symbol g))])
| New2_clo:
g_clo_rules g Start_clo ]
| Lift_clo:
V nt: non_terminal,
V s: sf,
rules gnt s —
g_clo_rules g (Transf_clo_nt nt) (map g_clo_sf_lift s).
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Definition g_clo (g: cfg non_terminal terminal):
(non_terminal terminal : Type)
(g: cfg g_clo_nt terminal):=
{| start_symbol:= Start_clo;
rules:= g_clo_rules g;
rules_finite:= g_clo_finite g |}.
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Consider once more grammar
G1 = ({51, X1,a,b},{a,b},{S1 — aX1,X1 — aX; | b}, S1)
Then, the new grammar G5 that generates L(G1)* can be expressed as:
Go = ({S2, 51, X1,a,b,c},{a,b,c}, P>, S9)

with P, containing the following rules:

So — €

So = 5351
S1 — aXy
X1 — aXy|b
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Formalization of Context-Free Language Theory

Closure Properties

Kleene star

Definition g2:= g_clo gl.
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

Concatenation (correctness) ‘

Considering that g3 is the concatenation of g; and g2 and S3,S7 and S
are, respectively, the start symbols of g3, g1 and g2)

Vg1, g2, 81, 82, (51 =g, 81) A (S2 =, s2) — (S3 =, s152)
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

Concatenation (correctness) ‘

Theorem g_cat_correct:
vV gl. cfgnon_terminal_1 terminal,
V g2: cfgnon_terminal_2 terminal,
V sl: sfi,
V s2: sf2,
generates gl s1 A generates g2 s2 —
generates (g_cat gl g2)
((map g_cat_sf_liftl s1)++(map g_cat_sf_lift2 s2)).
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

‘ Concatenation (completeness) ‘

Vs3, (S3 =7, s3) = 351,82 (53 = 51 52) A (S1 =, 51) A (S2 =, 52)

Theorem g_cat_correct_inwv:

V gl: cfg non_terminal_1 terminal,

V g2: cfgnon_terminal_2 terminal,

V s: sfc,

generates (g_cat gl g2) s —

s = [inl (start_symbol (g_cat gl g2))] V

3 s1: sfl,

3 s2: sf2,

s =(map g_cat_sf_liftl sl1)++(map g_cat_sf_lift2s2) A
generates gl s1 A generates g2 s2.
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

‘ Union (correctness) ‘

Considering that g3 is the union of g; and g5 and S3,.57 and S5 are,
respectively, the start symbols of g3, g1 and g9):

Vg1, g2, 81, 82, (S1 =5, 51— 53 =, 51) A (S2 =, 52 — S3 =7, s2)
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

‘ Union (correctness) ‘

Theorem g_uni_correct:

vV gl. cfgnon_terminal_1 terminal,
V g2: cfgnon_terminal_2 terminal,
V sl: sfi,

V s2: sf2,

(generates gl s1 — generates (g_uni gl g2) (map g_uni_sf_liftl s1))
N

(generates g2 s2 — generates (g_uni gl g2) (map g_uni_sf_1ift2 s2)).
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

‘ Union (completeness) ‘

Vss3, (53 :>;;3 83) — (Sl :>Zl 83) V (52 =>;;2 83)

Theorem g_uni_correct_inwv:

V gl: cfg non_terminal_1 terminal,

vV g2: cfg non_terminal_2 terminal,

V s: sfu,

generates (g_uni gl g2) s —

(s=[inl (start_symbol (g_uni g1 g2))]) Vv

(3 si:sfl, (s=(map g_uni_sf_liftl sl) A generates gl s1)) V
(3 s2: sf2, (s=(map g_uni_sf_lift2 s2) A generates g2 s2)).
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

Kleene star (correctness) ‘

Considering that g, is the Kleene star of g; and S, and S are, respectively,
the start symbols of g, and ¢1):

Y1, s1, S2,(S2 :>;2 €) A ((So :>;2 s2) A (St :>;1 s1) = So :>;2 S9+81)
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

Kleene star (correctness) ‘

Theorem g_clo_correct:

V g: cfg non_terminal terminal,

YV s: sf,

VvV s': sfc,

generates (g_clo g) nil A (generates (g_clo g) s’ A generates gs —
generates (g_clo g) (s'++ map g_clo_sf_lift s)).
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

‘ Kleene star (completeness)‘

Vsa, (52 i; s9) = (s2 =€)V
(3 51, 55| (s2 = sh - 51) A (S2 =7, s5) A (S =3, 51))

Theorem g_clo_correct_inv:

V g: cfg non_terminal terminal,

YV s: sfc,

generates (g_clo g) s —

(s=[l) v

(s=[inl (start_symbol (g_clo g))]) V

(3 s': sfc,

Is": sf,

generates (g_clo g) s' A generates g s’ A s=s’ ++map g_clo_sf_lift s").
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Formalization of Context-Free Language Theory

Closure Properties

Correctness and Completeness

Proof strategy

Induction over the predicate derives or one of its variants.
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Formalization of Context-Free Language Theory

Closure Properties

Closure over Languages

Inductive 1_uni (terminal : Type) (11 12: lang terminal):
lang terminal:=

| 1 _uni_11:V s: sentence, 11 s — 1_uni 1112 s

| 1_uni_12:V s: sentence, 12 s — 1_uni 11 12 s.

Inductive 1_cat (terminal : Type) (11 12: lang terminal):
lang terminal:=

| 1_cat_app: V sl s2: sentence, 11 s1 — 12 82 — 1_cat 11 12 (s1 ++s2).

Inductive 1_clo (terminal : Type) (1: lang terminal):

lang terminal:=

| 1_clo_nil:1_clo 1]

| 1_clo_app: V sl s2: sentence, (1_clo1l) s1 - 1s2 — 1_clo 1l (sl ++s2).
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Formalization of Context-Free Language Theory

Closure Properties

Closure over Languages

Proof strategy

» Correctness and completeness of union, concatenation and Kleene
star: trivial from definitions;

» Non-trivial for 1_uni, 1_cat and 1_clo being context-free languages:
use the definition of CFL, find corresponding CFGs and use previous
results.
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Formalization of Context-Free Language Theory

Closure Properties

Closure over Languages

Theorem 1_uni_is_cfl:
v 11 12: lang terminal,
cfl 11 — ¢f112 — cfl (1_uni 11 12).

Theorem 1_cat_is_cfl:
v 11 12: lang terminal,
cfl 11 — c¢fl 12 — cfl (1_cat 11 12).

Theorem 1_clo_is_cfl:
vV 1: lang terminal,
cfl1l — cfl (1_clo 1).
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Formalization of Context-Free Language Theory

Grammar Simplification

Construct an equivalent grammar, free of:
© Empty rules;
© Unit rules;
© Useless symbols;
© Inaccessible symbols.

For all G, if G is non-empty, then there exists G’ such that L(G) = L(G")
and G’ has no empty rules (except for one, if G generates the empty
string), no unit rules, no useless symbols, no inaccessible symbols and the

start symbol of G’ does not appear on the right-hand side of any other rule
of G.
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Formalization of Context-Free Language Theory

Grammar Simplification
Empty rule

An empty rule v € P is a rule whose right-hand side 3 is empty (e.g.
X — €). We formalize that for all G, there exists G’ such that
L(G) = L(G") and G’ has no empty rules, except for a single rule S — ¢ if

€ € L(G); in this case, S (the initial symbol of G’) does not appear on the
right-hand side of any rule of G.
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Nullable symbol:

Definition empty
(g: cfg terminal _) (s: non_terminal + terminal): Prop:=

derives g [s] []-
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Strategy for g;:
© Construct g2 (using g1) such that L(g2) = L(g1) — €
@ Construct g3 (using g2) such that:

> L(gs) = L(g1) U{e} if e € L(g1) or
» L(g3) = L(g1) if e ¢ L(g1).
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Step 1:
» For the new set of non-terminals:
» All the non-terminals of g¢;
> A fresh new non-terminal symbol (S2).
» For the new set of rules:

> All non-empty rules of g1;
» All rules of g; with every combination on nullable symbols in the
right-hand side removed, except if empty;
» One new rule: Sy — Sj.
» For the new grammar:
» The new set of non-terminals;
» The new set of rules;
» The new non-terminal (S3) as the start symbol.
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Inductive non_terminal’: Type:=
| Lift_nt: non_terminal — non_terminal’
| New_ss.

Notation sf' := (list (non_terminal’ + terminal)).

Definition symbol_lift

(s: non_terminal + terminal): non_terminal’ + terminal:=
match s with

| inr t = inr t

| inln = inl (Lift_nt n)

end.
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Inductive g_emp_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal’ — sf' — Prop =
| Lift_direct:
V left: non_terminal,
V right: sf,
right #[] — rules g left right —
g_emp_rules g (Lift_nt left) (map symbol_lift right)
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

| Lift_indirect:
V left: non_terminal,
V right: sf,
g_emp_rules g (Lift_nt left) (map symbol_lift right)—
V sl s2: sf,
¥ s: non_terminal,
right = s1 ++(inl s) 11 82 —
empty g (inl s) —
sl++s2 #[] —
g_emp_rules g (Lift_nt left) (map symbol_lift (sl ++s2))
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

| Lift_start_emp:
g_emp_rules g New_ss [inl (Lift_nt (start_symbol g))].

Marcus Ramos (UFPE) Language Formalization January 18th, 2016 96 / 207



Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Definition g_emp
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal' terminal :=
{| start_symbol:= New_ss;
rules:= g_emp_rules g;
rules_finite:= g_emp_finite g |}.
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Suppose, for example, that X, A, B, C are non-terminals, of which A, B
and C are nullable, a,b and ¢ are terminals and X — aAbBcC is a rule of
g. Then, the above definitions assert that X — aAbBcC' is a rule of
g_emp g, and also:

X — aAbBg;
X — abBceC;
X — aAbeC;
X — aAbc;
X — abBc;
X — abeC;
X — abe.

v

v

v

v

v

v

v
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Step 2:
» For the new set of non-terminals:
» All the non-terminals of Step 1.
» For the new set of rules:
» All the rules of Step 1;
> One new rule: Sy — € if e € L(g1).
» For the new grammar:

» The same set of non-terminals;
» The new set of rules;
» The same start symbol (.S2).
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Inductive g_emp'_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal non_terminal — sf' — Prop :=
| Lift_all:
V left: non_terminal’ _,
YV right: sf’,
rules (g_emp g) left right — g_emp'_rules g left right
| Lift_empty:
empty g (inl (start_symbol g)) —
g_emp'_rules g (start_symbol (g_emp g)) [].
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Definition g_emp’
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg (non_terminal' _) terminal :=
{| start_symbol:= New_ss _;
rules:= g_emp _rules g;
rules_finite:= g_emp _finite g |}.
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Theorem g_emp'_correct:

V g cfg non_terminal terminal,

g_equiv (g_emp’ g) g A

(produces_empty g — has_one_empty_rule (g_emp’ g)) A
(~ produces_empty g — has_no_empty_rules (g_emp’ g)) A
start_symbol_not_in_rhs (g_emp' g).
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

Definition has_one_empty_rule (g: cfg non_terminal terminal): Prop:=
V left: non_terminal,

vV right: sf,

rules g left right —

((left = start_symbol g) A (right = []) V right # []).

Definition has_no_empty_rules (g: cfg non_terminal terminal): Prop:=
V left: non_terminal,

YV right: sf,

rules g left right — right # [|.
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Formalization of Context-Free Language Theory

Grammar Simplification

Empty rules elimination

The definition of g_equiv, when applied to this theorem, yields:

V s: sentence,
produces (g_emp' g) s > produces g s.

For the — part, the strategy used was to prove that for every rule

left =4 emp Tight, either left —g right is a rule of g or left =7 right.
For the <— part, the strategy was more complicated, and involves induction
over the number of derivation steps in g.
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Formalization of Context-Free Language Theory

Grammar Simplification

Unit rule

A unit rule r € P is a rule whose right-hand side 3 contains a single
non-terminal symbol (e.g. X — Y'). We formalize that for all G, there
exists G’ such that L(G) = L(G’) and G’ has no unit rules.
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Formalization of Context-Free Language Theory

Grammar Simplification

Unit rules elimination

Inductive unit
(terminal non_terminal : Type)
(g: cfg terminal non_terminal)
(a: non_terminal)

non_terminal — Prop:=
| unit_rule:

v (b: non_terminal),

rules g a [inl b] »unit gab
| unit_trans:

V b c: non_terminal,

unit gab —unit gbc - unit gac.
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Formalization of Context-Free Language Theory

Grammar Simplification

Unit rules elimination

For g1:

» For the new set of non-terminals:
» All the non-terminals of ¢;.

» For the new set of rules:
» All non-unit rules of gi;

> New rules: one for each a, b, right such that (i) unit a b, (ii)

b — right, (iii) right is not a single non-terminal; the new rule
becomes a — right.

» For the new grammar:
» The same set of non-terminals;
» The new set of rules;
» The same start symbol (.57).
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Formalization of Context-Free Language Theory

Grammar Simplification

Unit rules elimination

Inductive g_unit_rules
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)

non_terminal — sf — Prop :=
| Lift_direct':

V left: non_terminal,

vV right: sf,

(V r:non_terminal, right # [inl r]) —

rules g left right —

g_unit_rules g left right
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Formalization of Context-Free Language Theory

Grammar Simplification

Unit rules elimination

| Lift_indirect”
V a b: non_terminal,
unit gab —
vV right: sf,
rules g b right —
(V c:non_terminal, right # [inl c]) —
g_unit_rules g a right.
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Formalization of Context-Free Language Theory

Grammar Simplification

Unit rules elimination

Definition g_unit
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal terminal :=
{| start_symbol:= start_symbol g;
rules:= g_unit_rules g;
rules_finite:= g_unit_finite g |}.
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Formalization of Context-Free Language Theory

Grammar Simplification

Unit rules elimination

As an example, consider the grammar G = (S, X,Y, Z,a,b,¢,a,b,c, P, S),
with P containing the following rules:

S — X|ab
X — Ylbe
Y = Z]ac
Z — abc

The above definitions assert that the new grammar G’ (the grammar that
is equivalent to G and is free of unit rules) has the following rules:

S — abc|ac|bc|ab

X — abc|ac]be

Y — abc|ac

Z — abc
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Formalization of Context-Free Language Theory

Grammar Simplification

Unit rules elimination

Theorem g_unit_correct:
V g cfg non_terminal terminal,
g_equiv (g_unit g) g A has_no_unit_rules (g_unit g).

The predicate has_no_unit_rules states that the argument grammar has
no unit rules at all:

Definition has_no_unit_rules (g: cfg non_terminal terminal): Prop:=
V left n: non_terminal,

vV right: sf,

rules g left right — right # [inl n].
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Formalization of Context-Free Language Theory

Grammar Simplification

Unit rules elimination

For the — part of the g_equiv (g_unit g) g proof, the strategy adopted
was to prove that for every rule left —4 ynit right of (g_unit g), either
left —4 right is a rule of g or left = right. For the < part, the
strategy was more complicated, and involves induction over a predicate
that is equivalent to derives (derives3), but generates the sentence
directly without considering the application of a sequence of rules, which
allows one to abstract the application of unit rules in g.
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Formalization of Context-Free Language Theory

Grammar Simplification

Useless symbol

A symbol s € V' is useful if it is possible to derive a string of terminal
symbols from it using the rules of the grammar. Otherwise, s is called an
useless symbol. A useful symbol s is one such that s =* w, with w € ¥*.
Naturally, this definition concerns mainly non-terminals, as terminals are
trivially useful. We formalize that, for all G such that L(G) # 0, there
exists G’ such that L(G) = L(G’) and G’ has no useless symbols.
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Formalization of Context-Free Language Theory

Grammar Simplification

Useless symbol elimination

Definition useful

(terminal non_terminal : Type)

(g: cfgnon_terminal terminal)

(s: non_terminal + terminal): Prop:=
match s with

| inr t = True

inl n = d s: sentence, derives inl n| (map term_lift s
g P
end.
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Formalization of Context-Free Language Theory

Grammar Simplification

Useless symbol elimination

For g1:
» For the new set of non-terminals:
» All the non-terminals of ¢;.
» For the new set of rules:
» All rules of g1, except those that have useless symbols.
» For the new grammar:

» The same set of non-terminals;
» The new set of rules;

» The same start symbol (S1, which must be useful).
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Formalization of Context-Free Language Theory

Grammar Simplification

Useless symbol elimination

Inductive g_use_rules
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal — sf — Prop =
| Lift_use:

V left: non_terminal,

vV right: sf,

rules g left right —

useful g (inl left) —

(V s:non_terminal + terminal, In s right — useful g s) —

g_use_rules g left right.
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Formalization of Context-Free Language Theory

Grammar Simplification

Useless symbol elimination

Definition g_use
(terminal non_terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal terminal:=
{| start_symbol:= start_symbol g;
rules:= g_use_rules g;
rules_finite:= g_use_finiteg |}.
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Formalization of Context-Free Language Theory

Grammar Simplification

Useless symbol elimination

As an example, consider grammar G = (X, X, Y, Z,a,b,¢c,a,b,c, P, S),
with P containing the following rules:

%

N <<
14l

Xa|Yal| Za
aX | bY
aY | bX
bZ | ¢

Clearly, symbols X and Y are useless symbols and can thus be removed
from G, resulting in G’ with the following set of rules:

S — Za
Z — bZ|c
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Formalization of Context-Free Language Theory

Grammar Simplification

Useless symbol elimination

Theorem g_use_correct:
V g: cfg non_terminal terminal,
non_empty g — g_equiv (g_use g) g A has_no_useless_symbols (g_use g).

Definition non_empty (g: cfg non_terminal terminal):
Prop:=
useful g (inl (start_symbol g)).

Definition has_no_useless_symbols (g: cfg non_terminal terminal):

Prop:=
YV n: non_terminal, appears g (inl n) — useful g (inl n).
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Formalization of Context-Free Language Theory

Grammar Simplification

Useless symbol elimination

» Hypothesis non_empty g on lemma g_use_correct is necessary in
order to assure that the new grammar will have a start symbol (the
start symbol should be a useful symbol, otherwise it would not be
possible to obtain a new grammar free of useless symbols).

» The — part of the g_equiv proof is straightforward, since every rule
of g_use is also a rule of g. For the converse, it is necessary to show
that every symbol used a the derivation of g is useful, and thus the
rules used in this derivation also appear in g_use.
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Formalization of Context-Free Language Theory

Grammar Simplification

Inaccessible symbol

A symbol s € V is accessible if it is part of at least one string generated
from the root symbol of the grammar. Otherwise, it is called an
inaccessible symbol. An accessible symbol s is one such that S =* asg,
with a, B € V*. We formalize that for all G, there exists G’ such that
L(G) = L(G") and G’ has no inaccessible symbols.
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Formalization of Context-Free Language Theory

Grammar Simplification

Inaccessible symbol elimination

Definition accessible

(terminal non_terminal : Type)

(g : cfgnon_terminal terminal)

(s: non_terminal + terminal): Prop:=

3 s1 s2: sf, derives g [inl (start_symbol g)] (s1++s::s2).
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Formalization of Context-Free Language Theory

Grammar Simplification

Inaccessible symbol elimination

For g1:
» For the new set of non-terminals:
» All the non-terminals of ¢;.
» For the new set of rules:
» All rules of g1, except those that have inaccessible symbols.
» For the new grammar:

» The same set of non-terminals;
» The new set of rules;
» The same start symbol (.57).
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Formalization of Context-Free Language Theory

Grammar Simplification

Inaccessible symbol elimination

Inductive g_acc_rules
(terminal non_terminal : Type)
(g : cfgnon_terminal terminal)
non_terminal — sf — Prop :=
| Lift_acc :V left: non_terminal,
vV right: sf,
rules g left right — accessible g (inl left) —
g_acc_rules g left right.
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Formalization of Context-Free Language Theory

Grammar Simplification

Inaccessible symbol elimination

Definition g_acc
(terminal non_terminal : Type)
(g : cfgnon_terminal terminal)
cfg non_terminal terminal :=
{| start_symbol:= start_symbol g;
rules:= g_acc_rules g;
rules_finite:= g_acc_finiteg |}.
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Formalization of Context-Free Language Theory

Grammar Simplification

Inaccessible symbol elimination

As an example, consider grammar G = (X, X, Y, Z,a,b,¢c,a,b,c, P, S),
with P containing the following rules:

%

N < X wn
44

aX | bX
aX [bX |a|b
cZ|a
cZ |b

Clearly, symbols Y, Z and c are inaccessible symbols and can thus be
removed from G, resulting in G’ with the following set of rules:

S —= aX |bX
X — aX |bX|alb
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Formalization of Context-Free Language Theory

Grammar Simplification

Inaccessible symbol elimination

Theorem g_acc_correct:
V g: cfg non_terminal terminal,
g_equiv (g_acc g) g A has_no_inaccessible_symbols (g_acc g).

Definition has_no_inaccessible_symbols (g: cfg non_terminal terminal):
vV s: (non_terminal + terminal), appears g s — accessible g s.

The — part of the g_equiv proof is also straightforward, since every rule
of g_acc is also a rule of g. For the converse, it is necessary to show that
every symbol used in the derivation of g is accessible, and thus the rules
used in this derivation also appear in g_acc.
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Formalization of Context-Free Language Theory

Grammar Simplification

Unification

Theorem g_simpl:
V g: cfg non_terminal terminal,
non_empty g —
Jg" cfg (non_terminal non_terminal) terminal,
g_equivg g A
has_no_inaccessible_symbols g' A
has_no_useless_symbols g’ A
(produces_empty g — has_one_empty_ruleg') A
(~ produces_empty g — has_no_empty_rules g') A
has_no_unit_rules g A
start_symbol_not_in_rhs g’
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Formalization of Context-Free Language Theory

Grammar Simplification

Unification

Definition start_symbol_not_in_rhs (g: cfg non_terminal terminal):=
V left: non_terminal,

vV right: sf,

rules g left right — ~ In (inl (start_symbol g)) right.
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Formalization of Context-Free Language Theory

Grammar Simplification

Unification

No useless symbols AND
No unit rules AND
No empty rules No empty rules

g g_emp g_use g_acc
Original grammar No unit rules AND No inaccessible symbols AND
No empty rules No useless symbols AND

No unit rules AND
No empty rules
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition

VG =(V,5,PS), 3G =(V 5,P.5) |
L(G) = LG AY (a = B) e P (BeX)V(BeN-N)

Valid only if G does not generate the empty string. If this is the case, then
the grammar that has this format, plus a single rule S’ — ¢, is also
considered to be in the Chomsky Normal Form, and generates the original
language, including the empty string.
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Formalization of Context-Free Language Theory

Chomsky Normal Form
Strategy

© For every terminal symbol o that appears in the right-hand side of a
rule r = a —¢g f1 -0 - B2 of G, create a new non-terminal symbol [o],
a new rule [o] = o and substitute o for [o] in 7;

© For every rule r = a —g N1 Ny --- N of G, where N; are all
non-terminals, create a new set of non-terminals and a new set of

rules such that:
o —q

[No---Np| —q

[Np—oNi_1Ni| —¢
[Nk—lNk] —q!

Ni[Ny - - N,
N2[N3 .. Nk])

Ny —2[Ni—1Ng],
Ni—1Ng
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Example

As an example, consider G = ({5, XY, Z,a,b, c},{a,b,c}, P,S") with P
equal to:

{8 — XYZd,
X — a,
Y — b
Z = ¢}
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Example

The CNF grammar G, equivalent to GG, would then be the one with the
following set of rules:

{8 — X[vZd],
YZd — Y[zd],
Zd] — Zld),

[d — d,

X — a,

Y — b

Z — ¢}
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Formalization of Context-Free Language Theory

Grammar Simplification

Chomsky Normal Form

Strategy for g;:
© Construct gy (using g1) such that L(g2) = L(g1) — €
© Construct g3 (using g1) such that L(gs) = L(g2) U {€}.
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Formalization of Context-Free Language Theory

Grammar Simplification

Chomsky Normal Form

From g; to go:
» For the new set of non-terminals:

» One for every possibile (non-empty) sequence of terminal and
non-terminal symbols of g;: [...]

» For the new set of rules:

> One for every terminal symbol ¢ of g;: [t] — ¢;

> One for every rule X — ¢ of g1: [X] — ¢;

> One for every rule left — s1s28 of g1: [left] — [s1][s20];

> One for every rule [left] — [s1][s2538] of g2: [s2538] — [s2][s35]
» For the new grammar:

» The new set of non-terminals;
» The new set of rules;
» The mapped start symbol ([S1]).
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Inductive non_terminal’ (non_terminal terminal : Type): Type:=
| Lift_r: sf — non_terminal’.

Notation sf = (list (non_terminal’ + terminal)).
Notation term_lift:= ((terminal_lift non_terminal) terminal).

Definition symbol_lift (s: non_terminal + terminal)
non_terminal' + terminal:=

match s with

| inr t = inr t

| inln = inl (Lift_r [inl n])

end.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Inductive g_cnf_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal’ — sf’ — Prop:=
| Lift_cnf_t:
V t: terminal,
V left: non_terminal,
V sl s2: sf,
rules g left (sl++[inr t]++s2) —
g_cnf_rules g (Lift_r [inr t]) [inr t]
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Formalization of Context-Free Language Theory

Chomsky Normal Form

| Lift_cnf_1
V left: non_terminal,
V t: terminal,
rules g left [inr t] —
g_cnf_rules g (Lift_r [inl left]) [inr t]
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Formalization of Context-Free Language Theory

Chomsky Normal Form

| Lift_cnf_2:
V left: non_terminal,
vV s1 s2: symbol,
YV beta: sf,
rules g left (sl :: s2 :: beta) —
g_cnf_rules g (Lift_r [inl left])
[inl (Lift_r [s1]); inl (Lift_r (s2 :: beta))]
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Formalization of Context-Free Language Theory

Chomsky Normal Form

| Lift_cnf_3:
YV left: sf,
vV s1 s2 s3: symbol,
YV beta: sf,
g_cnf_rules g (Lift_r left)
[inl (Lift_r [s1]); inl (Lift_r (s2 :: s3 : beta))] —
g_cnf_rules g (Lift_r (s2 :: s3 :: beta))
[inl (Lift_r [s2]); inl (Lift_r (s3 :: beta))].
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition g_cnf
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal’ terminal :=
{| start_symbol:= Lift_r [inl (start_symbol g)];
rules:= g_cnf_rules g;
rules_finite:= g_cnf_finiteg |}.
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Formalization of Context-Free Language Theory

Grammar Simplification

Chomsky Normal Form

From g; to gs:
» For the new set of non-terminals:
» The same of gs.
» For the new set of rules:

» The same of go;
> One extra rule: [S1] — €

» For the new grammar:

» The new set of non-terminals;
» The new set of rules;
» The mapped start symbol ([S1]).
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Inductive g_cnf'_rules
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
: non_terminal’ — sf’ — Prop:=
| Lift_cnf’_all:

V left: non_terminal’,

vV right: sf',

g_cnf_rules g left right —

g_cnf'_rules g left right
| Lift_cnf’ _new:

g_cnf'_rules g (start_symbol (g_cnf g)) [].
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition g_cnf’
(non_terminal terminal : Type)
(g: cfgnon_terminal terminal)
cfg non_terminal’ terminal:=
{| start_symbol:= start_symbol (g_cnf g);
rules:= g_cnf'_rules g;
rules_finite:= g_cnf'_finite g |}.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Theorem g_cnf_final:

V g cfg non_terminal terminal,

(produces_empty g V ~ produces_empty g) A
(produces_non_empty g V ~ produces_non_empty g) —
Jg" cfgnon_terminal’ terminal,

g_equiv g g A

(is_cnf g' V is_cnf_with_empty_rule g’).
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Definition is_cnf_rule (left: non_terminal) (right: sf): Prop:=
(3 sl s2: non_terminal, right = [inl s1; inl s2]) V
(3 t: terminal, right = [inr t]).

Definition is_cnf (g: cfg non_terminal terminal): Prop:=
V left: non_terminal,

vV right: sf,

rules g left right — is_cnf_rule left right.

Definition is_cnf_with_empty_rule (g: cfg non_terminal terminal):
Prop:=

V left: non_terminal,

YV right: sf,

rules g left right —

(left = (start_symbol g) A right =[]) V

is_cnf_rule left right.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

» The proof of this theorem requires that the original grammar is first
simplified according to the results discussed before;

» For the < part of g_equiv, the strategy adopted was to prove that
for every rule left — right of (g), either left — right is a rule of
g_cnf gorleft =" right in g_cnf g.

» For the — part, that is, (s; =9 enfg 52) = (51 =} s2), it was

enough to note that the sentential forms of g are embedded in the

sentential forms of g_cnf g, specifically in the arguments of the
constructor Lift_r of non_terminal’. Thus, a simple extraction
mechanism allows the implication to be proved by induction on the
structure of the sentential form sy.
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Formalization of Context-Free Language Theory

Chomsky Normal Form

Example

Using the previous example, suppose we have: X[Y Zd| =5 enfg abed,

which would be represented in our formalization as:

derives (g_cnf g) [inl X] ++[inl (Lift_r ([inl Y; inl Z; inr d]))]
(map (-symbol_lift _ _) (map term_lift [inr a; inr b; inr c; inr d]))

The extraction mechanism, applied to this case, would yield:

derives g [inl X; inl Y; inl Z; inr d]
(map term_lift [inr a; inr b; inr ¢; inr d])

which is exactly the expected result (XY Zd =7 abcd).
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

General results on binary trees and their relation to CNF grammars:
» 4,539 lines of Coq script, ~18.9% of the total;
> 84 lemmas;
» Supports the formalization of the Pumping Lemma.

» Based on the definition of btree.
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Inductive btree (non_terminal terminal: Type): Type:=
| bnode_1: non_terminal — terminal — btree
| bnode_2: non_terminal — btree — btree — btree.

AN

iUl
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Definition broot (t: btree): non_terminal:=
match t with

| bnode_1nt =n

| bnode_2ntlt2=n

end.

Fixpoint bfrontier (t: btree): sentence:=

match t with

| bnode_1nt = [t]

| bnode_2n tl t2 = bfrontier t1 ++bfrontier t2
end.

Fixpoint bheight (t: btree): nat:=

match t with

| bnode_1nt =1

| bnode_2n tl1 t2 = S (max (bheight t1) (bheight t2))
end.
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Lemma length_bfrontier_ge:

V t: btree,

YV i: nat,

length (bfrontiert) >2 "~ (1 — 1) —
bheight t > i.
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Inductive subtree (t: btree): btree — Prop:=
| sub_br:Vtl tr: btree, V n: non_terminal,
t = bnode_2 n tl tr —
subtree t tr
| sub_bl: V tl tr: btree, V n: non_terminal,
t = bnode_2n tl tr —
subtree t tl
| sub_ir: Vtl tr t': btree, V n: non_terminal,
subtree tr t' —
t = bnode_2 n tl tr —
subtree t t’
| sub_il: Vtl tr t": btree, V n: non_terminal,
subtree t1 t' —
t = bnode_2n tl tr —
subtree t t'.
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Lemma subtree_trans:
¥V t1 t2 t3: btree,
subtree t1 t2 —
subtree t2 t3 —
subtree t1 t3.

Lemma subtree_includes:

V t1 t2: btree,

subtree t1 t2 —

d1 r: sentence,

bfrontier t1 = 1 ++bfrontier t2 ++r A (L #[] V r # []).
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Inductive bpath (bt: btree): sf — Prop:=

| bp_1:

| bp_1:

V¥V n: non_terminal,

Y t: terminal,

bt = (bnode_1 n t) — bpath bt [inl n; inr t]

V n: non_terminal,

V btl bt2: btree,

V pl: sf,

bt = bnode_2 n btl bt2 — bpath btl pl — bpath bt ((inl n) :: p1)

:V n: non_terminal,

V btl bt2: btree,
vV p2: sf,
bt = bnode_2 n btl bt2 — bpath bt2 p2 — bpath bt ((inl n) :: p2).
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Lemma btree_ex_bpath:

YV bt: btree,

¥V ntl: 1list non_terminal,
bheight bt > length ntl + 1 —
bnts bt ntl —

dz: sf,

bpath bt z A

length z = bheight bt + 1 A
Jur: sf,

3 t: terminal,

Z = u ++r ++[inr t] A

lengthu >0 A

length r = length ntl + 1 A

(V s: symbol, In s (u ++r) — In s (map inl ntl)).
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Inductive bnts (bt: btree) (ntl: list non_terminal): Prop:=
| bn_1:V n: non_terminal,

Y t: terminal,

bt = (bnode_1nt) — Innntl — bnts bt ntl
| bn_2: V n: non_terminal,

V btl bt2: btree,

bt = bnode_2 n btl bt2 —

Innntl —

bnts btl ntl —

bnts bt2 ntl —

bnts bt ntl.
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Inductive bcode (bt: btree): list bool — Prop:=
| bcode_0: V n: non_terminal,

Y t: terminal,

bt = (bnode_1 n t) — bcode bt ]
| bcode_1:V n: non_terminal,

V btl bt2: btree,

¥ cl: list bool,

bt = bnode_2 n btl bt2 — bcode btl c1 — bcode bt (false :: cl)
| bcode_2: V n: non_terminal,

V btl bt2: btree,

V c2: list bool,

bt = bnode_2 n btl bt2 — bcode bt2 c2 — bcode bt (true :: c2).
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Lemma bpath_ex_bcode:
V t: btree,

vV p: sf,

bpatht p —

d c: list bool,

bcode t c A
bpath_bcode t p c.
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Inductive bpath_bcode (bt: btree): sf — (1ist bool) — Prop:=
| bb_0: V n: non_terminal, V t: terminal,

bt = (bnode_1 n t) — bpath_bcode bt [inl n; inr t] []
| bb_1: V n: non_terminal, V btl bt2: btree,

V cl: 1ist bool, V pl: sf,

bt = (bnode_2 n btl bt2) —

bpath btl pl —

bpath_bcode btl pl c1 —

bpath_bcode bt ((inl n) :: p1) (false :: cl)
| bb_2: V n: non_terminal, V btl bt2: btree,

¥V c2: list bool, V p2: sf,

bt = (bnode_2 n btl bt2) —

bpath bt2 p2 —

bpath_bcode bt2 p2 c2 —

bpath_bcode bt ((inl n) :: p2) (true :: c2).
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Lemma bcode_split:

V t: btree,

vV pl p2: sf,

¥ c: list bool,

bpath_bcode t (pl ++p2) ¢ —

lengthpl >0 —

lengthp2 > 1 —

bheight t = length pl + lengthp2 — 1 —
3 ¢l c2: 1list bool,

c =cl++c2 A

length cl = length p1 A

3 t2: btree,

3 x y: sentence,

bpath_bcode t2 p2 c2 A
btree_decompose t cl = Some (x, t2, y) A
bheight t2 = length p2 — 1.
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Fixpoint btree_decompose (bt: btree) (c: list bool):
option (sentence * btree % sentence):= ...

Fixpoint btree_subst (t1 t2: btree) (c: list bool):
option btree:= ...
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Inductive btree_cnf (g: cfg non_terminal’ terminal)
(bt: btree non_terminal’ terminal): Prop:=
| bt_cl:Vn: non_terminal’,

V t: terminal,

rules g n [inr t] —

bt = (bnode_1nt) —

btree_cnf g bt
| bt_c2: Vn nln2: non_terminal,

Y btl bt2: btree _ _,

rules g n [inl nl; inl n2] —

btree_cnf g btl —

broot btl = nl —

btree_cnf g bt2 —

broot bt2 =n2 —

bt = (bnode_2 n btl bt2) —

btree_cnf g bt.
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Lemma derives_g_cnf_equiv_btree:

vV g: cfgnon_terminal' terminal,

V n: non_terminal’,

V s: sentence,

s A1 -

(is_cnf g V is_cnf_with_empty_rule g) —
start_symbol_not_in_rhsg —
derives g [inl n] (map term_lift' s) —
J t: btree non_terminal’ terminal,
btree_cnf g t A

broot t =n A

bfrontier t = s.
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Formalization of Context-Free Language Theory

Generic Binary Trees Library

Lemma btree_equiv_derives_g_cnf:

Vg cfg_ _,

V t: btree _ _,

btree_cnf gt —

derives g [inl (broot t)] (map inr (bfrontier t)).
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Formalization of Context-Free Language Theory

Pumping Lemma

VL, (cfl £)— I n]|
Vo, (ae L)AN(al >n)—
Ju,v,w,z,y € ¥ | (a0 = wvwzy) A (Jvx| > 1) A (Jowz| < n)A

Vi, uwlwaly € L
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

© Since L is declared to be a context-free language (predicate cf1),
then there exists a context-free grammar G such that L(G) = £;

© Obtain G’ such that G’ is in Chomsky Normal Form and
L(G") = L(G);
© Take n as 2%, where k is the number of non-terminal symbols in G/;
@ Consider an arbitrary sentence « such that o € £ and |a| > n;
© Obtain a derivation tree ¢ that represents the derivation of o in G;

O Take a path that starts in the root of ¢t and whose length is the height
of t plus 1 (maximum length);

@ Then, the height of ¢ should be greater or equal than k + 1;

© This means that the selected path has at least k& + 2 symbols, being at
least £ + 1 non-terminals and one (the last) a terminal symbol;
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

© Since G’ has only k non-terminal symbols, this means that this path
has at least one non-terminal symbol that appears at least two times
in it;

@ Name the duplicated symbols n; and ny (n; = n2) and the
corresponding subtrees ¢; and to (note that ¢ is a subtree of ¢; and ¢;
is a subtree of t);

@ It is then possible to prove that the height of ¢; is greater than or
equal to 2, and less than or equal to ok

@ Also, that the height of ¢y is greater than or equal to 1 and less than
or equal to 281,

@® This implies that the frontier of ¢ can be split into five parts:
u, v, w,x,y, where w is the frontier of t5 and vwz is the frontier of ¢y;
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

)
75)
7¢)
@

As a consequence of the heights of the corresponding subtrees, it can
be shown that |vz| > 1 and |vwz| < n;

If t1 is removed from ¢, and t5 is inserted in its place, then we have a
new tree tV that represents the derivation of string uv’wz"y = uwy;

If, instead, t1 is inserted in the place where t lies originally, then we
have a tree t2 that represents the derivation of string uv?wa2y;

Repetition of the previous step generates all trees ¢ that represent the
derivation of the string uv'wz'y, Vi > 2.
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Formalization of Context-Free Language Theory

Pumping Lemma

Informal proof

N s N
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X
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Formalization of Context-Free Language Theory

Pumping Lemma

Lemma pumping_lemma:

vV 1: lang terminal,

(contains_empty 1 V ~ contains_empty 1) A
(contains_non_empty 1 V ~ contains_non_empty 1)
cfll —

d n: nat,

V s: sentence,

1s—

lengths > n —

Juvwxy: sentence,

s = u ++v ++w ++x ++y A

length (v ++x) > 1 A

length (u ++y) > 1 A

length (v ++w ++x) <n A

¥V i: nat, 1 (u ++(iter v i) ++w ++(iter x i) ++y).
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

» Find a grammar G that generates the input language L (this is a
direct consequence of the predicate is_cfl and corresponds to step 1;

» Obtain a CNF grammar G’ that is equivalent to G (step 2), using
previous results;

» G is substituted for G’ and the value for n is defined as 2% (step 3)
where k is the length of the list of non-terminals of G’ (which in turn
is obtained from the predicate rules_finite);
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

» An arbitrary sentence a of L(G’) that satisfies the required minimum
length 7 is considered (step 4);

» Lemma derives_g_cnf_equiv_btree is then applied in order to
obtain a btree ¢ that represents the derivation of ain G’ (step 5).
Naturally we have to ensure that « # €, which is true since by
assumption |a| > 2%,

» Obtain a path (a sequence of non-terminal symbols ended by a
terminal symbol) that has maximum length, that is, whose length is
equal to the height of ¢ plus 1 (steps 6 and 7). This is accomplished
by means of the definition bpath and the lemma btree_ex_bpath.
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

The length of this path (which is > & 4+ 2) allows one to infer that it must
contain at least one non-terminal symbol that appears at least twice in it
(steps 8, 9 and 10). This result comes from the application of the lemma
pigeon which represents a list version of the well-known pigeonhole
principle:

Lemma pigeon:

vV A: Type,

V x y: list A,

(V e:A, Inex > Iney) —
length x = lengthy + 1—
3d: A,

d x1 x2 x3: 1list A,

x = x1 ++[d] ++x2 ++[d] ++x3.
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

» Since a path is not unique in a tree, it is necessary to use some some
other representation that can describe this path uniquely, which is
done by the predicate bcode and the lemma bpath_ex_bcode;

» Once the path has been identified with a repeated non-terminal
symbol, and a corresponding bcode has been assigned to it, lemma
bcode_split is applied twice in order to obtain the two subtrees t;
and t, that are associated respectively to the first and second repeated
non-terminals of ¢;
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

» From this information it is then possible to extract most of the results
needed to prove the goal (steps 11, 12, 13 and 14), except for the
pumping condition. This has been obtained by an auxiliary lemma
pumping_aux, which takes as hypothesis the fact that a tree ¢; (with
frontier vwz) has a subtree to (with frontier w), both with the same
roots, and asserts the existence of an infinite number of new trees
obtained by repeated substitution of 5 by #; or simply 1 by 9, with
respectively frontiers v'wz?,i > 1 and w, or simply v'wax?,i > 0.
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

Lemma pumping_aux:

Vg cfg_ _,
¥V t1 t2: btree (non_terminal non_terminal terminal) _,
Vn _, Veclc2: list bool, Vv x: sentence,

btree_decompose t1 c1 = Some (v, t2, x) —
btree_cnf g t1l — broot t1 =n —
bcode t1 (cl ++c2) » cl #[] —
broot t2 = n — bcode t2 c2 —

(V i: nat,

Jt': btree _ _,

btree_cnf g t' A

broot t' =n A

btree_decompose t' (iter cl i) = Some (iter v i, t2, iter x i) A
bcode t' (iter cl i ++c2) A

get_nt_btree (iter cl i) t' = Some n).
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Formalization of Context-Free Language Theory

Pumping Lemma

Formal proof

» The proof continues by showing that each of these new trees can be
combined with tree ¢ obtained before, thus representing strings
uv'wz'y,i > 0 as necessary (steps 15 and 16).

» Finally, we prove that each of these trees is related to a derivation in
G’, which is accomplished by lemma btree_equiv_produces_g_cnf
(step 17).
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Formalization of Context-Free Language Theory

Pumping Lemma

Finite languages

If L is finite, then the PL is trivially true:
» Suppose L is finite;
Let G in CNF such that L = L(G);
Let k£ be the number of non-terminals of G;

We claim there is no w € L such that |w| > 2*:

> If there is, then the PL asserts that L is i nfinite, which contradicts the
hypothesis.

v

v

v

v

Since there is no w € L such that |w| > 2¥, then the PL is trivially
true.
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Formalization of Context-Free Language Theory

Summary

» 23,985 lines of Coq script spread in 18 libraries;

» Eight auxiliary libraries contain 11,781 lines of Coq script and
correspond to almost half of the formalization (49.1%);

» Two of these auxiliary libraries (cfg.v and trees.v) sum, alone,
8,932 lines or more than one third (37.2%) of the total;

» 533 lemmas and theorems, 83 definitions and 40 inductive definitions
among 1,067 declared names;

» Created and compiled with the Coq Proof Assistant, version 8.4pl4
(June 2014), using CoqlDE for Windows;

» Available for download at https://github.com/mvmramos/v1;

» Compiled with the following commands under Cygwin:

» coq_makefile *.v > _makefile
» make -f _makefile
» make -f _makefile html
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Formalization of Context-Free Language Theory

Summary

Main lemmas

» Library chomsky.v:

» g_cnf_exists

v

Library closure.v:

» 1_clo_is_cfl

» 1 _clo_correct

» 1_clo_correct_inv
Library concatenation.v:

» 1_cat_is_cfl

» 1_cat_correct

» 1_cat_correct_inv

v

v

Library emptyrules.v:
> g_emp_correct
» g_emp’_correct

v

Library inaccessible.v:
» g_acc_correct
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Formalization of Context-Free Language Theory

Summary

Main lemmas

» Library pumping:
> pumping_lemma
> pumping_lemma_v2

v

Library simplification.v:
» g_simpl_exists_vl
> g_simpl_exists_v2

v

Library union.v:
» 1 _uni_is_cfl
» 1_uni_correct
» 1_uni_correct_inv

v

Library unitrules.v:

» g_unit_correct

v

Library useless.v:

> g_use_correct
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Formalization of Context-Free Language Theory

Discussion

Lessons

One needs to have a previous hands-on experience in a real world
formalization project of some complexity and size, preferably in a
group willing to share its (supposedely) higher expertise and

experience, before facing alone the challenges of a similar project.
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Formalization of Context-Free Language Theory

Discussion

Lessons

Formalization projects (as with any other projects) should come
in increasing size and complexity, allowing the person (or team)
involved to be adequately prepared to cope with the new
challenges.
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Formalization of Context-Free Language Theory

Discussion

Lessons

Avoid formalizing a theory that you are not familiar with, unless
you already master the proof assistant and have some experience
with the formalization process. Otherwise, stick to a well-know
theory and reduce the risks involved.
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Formalization of Context-Free Language Theory

Discussion

Lessons

The formalization of any theory should start with the shortest,
simpler and more independent lemmas and theorems, and proceed
towards the largest and more complex ones, benefiting from

previous results.
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Formalization of Context-Free Language Theory

Discussion

Advices

» Make a deep review of the informal proof;

» Be sure of the statement to be proved;

» Use the cohesion and coupling principles;

» Choose a naming policy;

» Develop a writing style;

» Be prepared for lots of trial and error;

» Do not underestimate the importance of the inductive definitions;

» Get rid of useless code.
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Formalization of Context-Free Language Theory

Discussion

This formalization

v

Set versus Prop;

v

Finiteness of the context-free grammar;

v

Variants of inductive predicate definitions;

v

Use of syntax trees in proofs;

v

Statement and proof of the Pumping Lemma.
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Formalization of Context-Free Language Theory

Discussion

Pumping Lemma

VL, (cfl £)— I n]|
Va,(a€elL)AN(al >n)—
Ju,v,w,z,y € ¥*| (a = wvwzy) A (Jvx| > 1) A (Jowz| < n)A

Vi, uv'wz'y € L
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Formalization of Context-Free Language Theory

Discussion

Pumping Lemma

VL, (cfl L) = 3 n|
Va,(a€el)AN(al >n)—
Ju,v,w,z,y € | (a = wvwzy)A(jvz| > DA (juy| > 1) A(jlvwz] < n)A

Vi, wlwazly € £
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Formalization of Context-Free Language Theory

Discussion

Pumping Lemma

A variant of the Pumping Lemma, using a smaller value of n, has also been

proved. This result uses n = 2¥=1 4+ 1 instead of n = 2* (k is the number
of non-terminal symbols in the CNF grammar). Since the proof needs a
binary tree of height at least & + 1 in order to proceed, and since trees of
height i have as frontier strings of length maximum 2°~! it is possible to
consider strings of length equal to or greater than 2~ + 1 (and not only
of length equal to or greater than 2%) in order to have the corresponding
binary tree with height equal to or higher than k + 1. This way, two slightly
different proofs of the Pumping Lemma have been produced: one with

n = 2¥ (pumping_lemma) and the other with n = 28=1 41
(pumping_lemma_v2).
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Formalization of Context-Free Language Theory

Discussion

Pumping Lemma

The statement of (pumping_lemma_v2) becomes:
VL, (cfl L) = I n|
Vo, (ae L)AN(a| >n)—
Fu,v,w,z,y € X | (a = uwowzy) A (Jvx] > 1) A (Jowz| < (n—1) %2) A

Vi, wlwzty € £

Marcus Ramos (UFPE) Language Formalization January 18th, 2016 196 / 207



Formalization of Context-Free Language Theory

Discussion

Comparison

Norrish & Barthwal | Firsov & Uustalu | Ramos
Proof assistant HOL4 Agda Coq
Closure v X v
Simplification v empty and unit rules v
CNF v v v
GNF v X X
PDA v X X
PL v X v
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Conclusions and Further Work

Achievements

» A set of libraries that formalizes an important subset of context-free
language theory;
» Expertise on interactive theorem proving.
> Pioneering;
» Reasoning about context-free language theory;
» Learning and experimenting in an educational environment;
» New projects and theories.
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Conclusions and Further Work

Contributions

Pioneering

» Bring formalization into an area which has relied so far mostly in
informal arguments;

» First formalization of a coherent and complete subset of context-free
language theory in the Coq proof assistant;

» Second formalization ever (in any proof assistant) of the Pumping
Lemma for context-free languages;

» Second most comprehensive formalization of an important subset of
the context-free language theory in any proof assistant.
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Conclusions and Further Work

Contributions

Reasoning about context-free language theory

» The present formalization can be very helpful to get insight into the
nature and behaviour of the objects of context-free language theory, as
well on the proofs of their properties;

» Also, when developing representations for new and similar devices, and
proofs for new results of the theory;

» Finally, the formalization represents the guarantee that the proofs are
correct and that the remaining errors in the informal demonstrations,
if any, could finally and definitely be reviewed and corrected.
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Conclusions and Further Work

Contributions

Learning and experimenting in an educational environment

Teachers, students and professionals can use the formalization to learn and
experiment with the objects and concepts of context-free language theory
in a software laboratory, where further practical observations and
developments could be done independently. Also, the material could be
deployed as the basis for a course on the theoretical foundations of
computing, exploring simultaneously or independently:

» Language theory;

> Logic;

» Proof theory;

» Type theory;

» Models of computation;
» Formal mathematics;

> Interactive theorem provers and Coq.
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Conclusions and Further Work

Contributions

Expertise and knowledge

» The essence of formalization comes into light with the
accomplishment of this project;

» This enables the application of similar principles to the formalization
of other theories, and allow for the multiplication of the knowledge
among students and colleagues;

» Considering the growing interest in formalization in recent years, this
project can be considered as a good technical preparation for dealing
with the challenges of theory and computer program developments of
the future.
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Conclusions and Further Work

Further Work

Various possibilities, considered in three different groups:
» New devices and results;
» Code extraction;

» General enhancements.
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Conclusions and Further Work

Further Work

New devices and results

» Pushdown automata, including: definition, equivalence of pushdown
automata and context-free grammars; equivalence of empty stack and
final state acceptance criteria; non-equivalence of the deterministic
and the non-deterministic models;

» Elimination of left recursion in context-free grammars and Greibach
Normal Form;

» Derivation trees, ambiguity and inherent ambiguity;

» Decidable problems for context-free languages (membership,
emptyness and finiteness for example);

» Odgen’s Lemma.
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Conclusions and Further Work

Further Work

Code extraction

» Add computational content;
» Extract certified programs for:

» Closure properties;
» Grammar simplification;
» CNF.

» Certified parser generator.
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Conclusions and Further Work

Further Work

General enhancements

» Creating a naming policy that can be used rename the various objects
and better identify their nature and intended use;

» Eliminating unnecessary definitions and lemmas;

» Making a better grouping of related objetcs and thus a better
structuring of the whole formalization;

» Simplifying some proof scripts;
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Conclusions and Further Work

Further Work

General enhancements

» Commenting the scripts in order to provide a better understanding of
their nature.

» Substitution of the classical logic proof of the pigeonhole principle for
a constructive version;

» Rewriting of the contents of the trees.v library, in order to allow that
all definitions and results be parametrized on any two types, one for
the leafs and the other for the internal nodes of a btree;

» Experimenting and rewriting in SSReflect.
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