Gramáticas Lineares à Direita e à Esquerda

Prof. Marcus Vinícius Midena Ramos

Universidade Federal do Vale do São Francisco

20 de dezembro de 2019

marcus.ramos@univasf.edu.br www.univasf.edu.br/~marcus.ramos

Parte 2

Dada uma G.L.D, obter uma G.L.D que gera a linguagem reversa.

Entrada:

G.L.D.
$$G_1 = (V, \Sigma, P_1, S)$$

- $\quad \quad \alpha \to \beta \in P_1$
- $ightharpoonup \alpha \in N$
- $\beta \in (\Sigma \cup \{\epsilon\})(N \cup \{\epsilon\})$

Saída:

G.L.D.
$$G_2 = (V \cup \{W\}, \Sigma, P_2, W)$$

P_1	P_2
$X \to aY$	$Y \to aX$
$X \to Y$	$Y \to X$
$X \to a$	$W \to aX$
$X \to \epsilon$	$W \to X$
	$S \to \epsilon$

Teorema

$$L(G_1) = L(G_2)^R$$

ou ainda

$$\forall G_1(G.L.D.), \exists G_2(G.L.D.), L(G_1) = L(G_2)^R$$

Exemplo

G.L.D. *G*₁:

- ightharpoonup S
 ightharpoonup aS
- \triangleright $S \to X$
- ightharpoonup X o bX
- $X \to Y$
- ightharpoonup Y
 ightharpoonup cY
- $ightharpoonup Y
 ightharpoonup \epsilon$

$$L(G_1) = a^*b^*c^*$$

Exemplo (continuação)

GLD G_2 :

- ightharpoonup S
 ightharpoonup aS
- ightharpoonup X o S
- $X \rightarrow bX$
- ightharpoonup Y o X
- ightharpoonup Y
 ightharpoonup cY
- ightharpoonup W o Y
- $ightharpoonup S
 ightharpoonup \epsilon$

$$L(G_2) = c^*b^*a^* = L(G_1)^R$$

Exemplo (derivação)

Derivação da sentença aabbcc em G_1 :

$$S \Rightarrow aS \Rightarrow aaS \Rightarrow aaX \Rightarrow aabX \Rightarrow aabbX \Rightarrow$$

$$aabbY \Rightarrow aabbcY \Rightarrow aabbccY \Rightarrow aabbcc$$

Derivação da sentença ccbbaa (= $aabbcc^R$) em G_2 :

$$W \Rightarrow Y \Rightarrow cY \Rightarrow ccX \Rightarrow ccbX \Rightarrow$$

$$ccbbX \Rightarrow ccbbS \Rightarrow ccbbaS \Rightarrow ccbbaaS \Rightarrow ccbbaa$$

Teorema

Deseja-se provar rl_to_rl_reverse_derives_2:

$$\forall\,w: sentence, (S\Rightarrow_{G_1}^* w) \Leftrightarrow (W\Rightarrow_{G_2}^* w^R)$$

ou ainda

$$\forall w : sentence, (S \Rightarrow_{G_1}^n w) \Leftrightarrow (W \Rightarrow_{G_2}^{n+1} w^R)$$

G.L.D. para G.L.D. com linguagem reversa Observação

- Dados:
 - ▶ Uma GLD G₁;
 - ▶ Uma GLD G₂ construída de acordo com o algoritmo apresentado;
 - ▶ Uma sentença $w, w \in L(G_1)$.
- Existe uma relação entre as formas sentenciais da derivação de uma sentença w em G_1 e de w^R em G_2 ;
- Esta relação é capturada pelos lemas intermediários apresentados a seguir.

G.L.D. para G.L.D. com linguagem reversa Lema intermediário 1a

Deseja-se provar rl_to_rl_reverse_derives_1a:

$$\forall w : sentence, S \Rightarrow_{G_1}^* w \rightarrow$$

$$\forall i, \forall N, i \leq |w| \rightarrow$$

$$(S \Rightarrow_{G_1}^* prefix(i, w)N) \rightarrow (W \Rightarrow_{G_2}^* prefix(|w| - i, w^R)N)$$

G.L.D. para G.L.D. com linguagem reversa Lema intermediário 1b

Deseja-se provar rl_to_rl_reverse_derives_1b:

$$\forall w : sentence, W \Rightarrow_{G_2}^* w^R \rightarrow$$

$$\forall i, \forall N, i \leq |w| \rightarrow$$

$$(W \Rightarrow_{G_2}^* prefix(|w| - i, w^R)N) \rightarrow (S \Rightarrow_{G_1}^* prefix(i, w)N)$$

Lemas intermediários

▶ De fato, todas as formas sentenciais da derivação da sentença aabbcc em G_1 do exemplo, e que são numeradas de 0 a 8, estão em correspondência direta, através do lema intermediário, com formas sentenciais da derivação de w^R em G_2 (slide seguinte)

Exemplo (derivação)

Derivação da sentença aabbcc em G_1 :

$$\underbrace{S}_{0} \Rightarrow \underbrace{aS}_{1} \Rightarrow \underbrace{aaS}_{2} \Rightarrow \underbrace{aaX}_{3} \Rightarrow \underbrace{aabX}_{4} \Rightarrow \underbrace{aabbX}_{5} \Rightarrow$$

$$\underbrace{aabbY}_{6} \Rightarrow \underbrace{aabbcY}_{7} \Rightarrow \underbrace{aabbccY}_{8} \Rightarrow aabbcc$$

Derivação da sentença ccbbaa em G_2 :

$$W \Rightarrow \underbrace{Y}_{8} \Rightarrow \underbrace{cY}_{7} \Rightarrow \underbrace{ccY}_{6} \Rightarrow \underbrace{ccX}_{5} \Rightarrow \underbrace{ccbX}_{4} \Rightarrow$$
$$\underbrace{ccbbX}_{3} \Rightarrow \underbrace{ccbbS}_{2} \Rightarrow \underbrace{ccbbaS}_{1} \Rightarrow \underbrace{ccbbaaS}_{0} \Rightarrow ccbbaa$$

Exemplo (derivação)

#	G_1	G_2
0	$S \Rightarrow^* S$	$W \Rightarrow^* ccbbaaS$
1	$S \Rightarrow^* aS$	$W \Rightarrow^* ccbbaS$
2	$S \Rightarrow^* aaS$	$W \Rightarrow^* ccbbS$
3	$S \Rightarrow^* aaX$	$W \Rightarrow^* ccbbX$
4	$S \Rightarrow^* aabX$	$W \Rightarrow^* ccbX$
5	$S \Rightarrow^* aabbX$	$W \Rightarrow^* ccX$
6	$S \Rightarrow^* aabbY$	$W \Rightarrow^* ccY$
7	$S \Rightarrow^* aabbcY$	$W \Rightarrow^* cY$
8	$S \Rightarrow^* aabbccY$	$W \Rightarrow^* Y$

- ▶ Prova de que rl_to_rl_derives_2 é verdadeiro supondo que rl_to_rl_derives_1a e rl_to_rl_derives_1b são verdadeiros;
- Duas provas são necessárias:
 - \bullet $\forall w : sentence, (S \Rightarrow_{G_1}^* w) \rightarrow (W \Rightarrow_{G_2}^* w^R)$
 - $\forall w : sentence, (S \Rightarrow_{G_1}^* w) \leftarrow (W \Rightarrow_{G_2}^* w^R)$

Prova informal

- - ► Hipótese 1: w:sentence;
 - ▶ Hipótese 2: $S \Rightarrow_{G_1}^* w$;
 - ▶ Sabe-se que $S \Rightarrow_{G_1}^* S$;
 - ightharpoonup Em outras palavras $S \Rightarrow_{G_1}^* prefix(0,w)S$
 - ▶ Portanto i = 0:
 - ightharpoonup Portanto N=S;
- ▶ Aplicação de rl_to_rl_derives_1a nas hipóteses acima resulta em $W \Rightarrow_{G_2}^* w^R S$;
- ▶ Sabe-se que $S \rightarrow \epsilon \in P_2$;
- ▶ Logo, $W \Rightarrow_{G_2}^* w^R S \Rightarrow_{G_2} w^R$ e $w^R \in L(G_2)$.

Prova informal

- $② \ \forall \, w : sentence, (S \Rightarrow_{G_1}^* w) \leftarrow (W \Rightarrow_{G_2}^* w^R)$
- ▶ Para esta prova, vamos supor que todas as regras de G_1 são do tipo $X \to \sigma Y$ ou $X \to Y$ com uma única regra vazia $Z \to \epsilon$;
- \blacktriangleright Em outras palavras, vamos supor que G_1 encontra-se na forma normal proposta acima e detalhada a seguir.

Formal normal

Forma normal para GLD G resultando em G':

- ▶ Se $X \to \sigma Y \in P$, então $X \to \sigma Y \in P'$;
- ▶ Se $X \to Y \in P$, então $X \to Y \in P'$;
- ▶ Se $X \to \sigma \in P$, então:
 - ▶ Se G' já possui uma regra vazia $Z \to \epsilon$, então $X \to \sigma Z \in P'$;
 - ▶ Se G' ainda não possui uma regra vazia, então $X \to \sigma Z \in P'$ e $Z \to \epsilon \in P'$, onde Z é um novo símbolo não-terminal de G'.
- ▶ Se $X \to \epsilon \in P$, então:
 - Se G' já possui uma regra vazia $Z \to \epsilon$, então $X \to Z \in P'$;
 - lacktriangle Se G' ainda não possui uma regra vazia, então $X o \epsilon \in P'$.

Necessário formalizar a construção de G' a partir de G; Necessário provar formalmente que L(G') = L(G).

Prova informal

- $② \ \forall \, w : sentence, (S \Rightarrow_{G_1}^* w) \leftarrow (W \Rightarrow_{G_2}^* w^R)$
 - ► Hipótese: $W \Rightarrow_{G_2}^* w^R$;
- ▶ Supondo que G_1 está na forma normal, então existe uma única regra com W do lado esquerdo em G_2 , e esta regra é $W \to Z$;
- ▶ Logo, $W \Rightarrow_{G_2} Z \Rightarrow_{G_2}^* w^R$ e $W \Rightarrow_{G_2} Z$;
- lacktriangle Em outras palavras, $W\Rightarrow_{G_2} prefix(|w|-|w|,w^R)Z$
- ightharpoonup Considere i = |w|;
- ightharpoonup Considere N=Z;
- ▶ Aplicação de rl_to_rl_derives_1b nas hipóteses acima resulta em $S \Rightarrow_{G_1}^* (w^R)^R Z;$
- ▶ Como é sabido que $Z \to \epsilon \in P_1$, segue que $S \Rightarrow_{G_1}^* wZ \Rightarrow_{G_1}^* w$ e portanto $w \in L(G_1)$.