LINGUAGENS FORMAIS E AUTÔMATOS

Prova 3 – 22/08/2019 – Prof. Marcus Ramos

1ª Questão (2,0 pontos): Prove que a linguagem $a^k b^{k+1} a^{k-1}, k \ge 1$, não é regular.

2ª Questão (1,5 pontos): Prove que a L linguagem descrita a seguir, sobre o alfabeto $\{a,b,c,d\}$ é regular. Todas as suas sentenças satisfazem todos os seguintes critérios:

- Possuem quantidade ímpar de símbolos *a*;
- Possuem comprimento par;
- Possuem a subcadeia *abcd*;
- Não posuem a subcadeia *dcba*;
- Não termina com a nem com b.

3ª Questão (1,5 pontos): Usando autômatos finitos, prove que o problema do pertencimento é decidível para a classe das linguagens regulares. Em outras palavras, como determinar se dados um autômato finito qualquer e uma cadeia qualquer, a cadeia é aceita pelo autômato?

4º Questão (1,5 pontos): Prove que a classe das linguagens finitas (linguagens com uma quantidade finita de sentenças) é um subconjunto próprio da classe das linguagens livres de contexto.

5ª Questão (1,5 pontos): Obtenha uma gramática livre de contexto que gere a seguinte linguagem sobre o alfabeto $\{a,b\}$: a^mb^n com (m=n) ou $(m \neq n)$.

6ª Questão (2,0 pontos): Obtenha um autômato de pilha determinístico que aceite a seguinte linguagem sobre o alfabeto $\{a,b,c,d\}$: $(ab)^n(cd)^n$ com $n \ge 1$.