LINGUAGENS FORMAIS E AUTÔMATOS

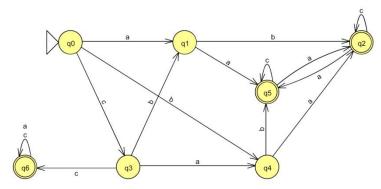
Prova 2 - 10/06/2011 - Prof. Marcus Ramos

NOME	•	

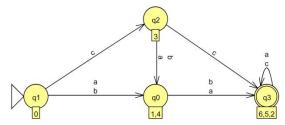
- Colocar seu nome no espaço acima;
- A prova pode ser feita à lápis ou caneta;
- A duração é de três horas;
- As questões da parte 1 devem ser respondidas no verso da prova;
- As questões 1 e 2 da parte 1 valem 0,9 ponto cada; as demais valem 1,0 ponto cada;
- As questões da parte 2 devem ser respondidas no espaço apropriado;
- Cada questão da parte 2 vale 0,4 ponto;
- Cada questão da parte 2 tem uma única resposta;
- Na parte 2 deve-se selecionar a resposta VERDADEIRA, exceto se indicado o contrário;
- Cada resposta errada (da parte 2 apenas) anula uma resposta correta (da parte 2 também);
- Questões não respondidas não assinalam pontos;
- A resolução estará disponível na página da disciplina na Internet ao término da prova.

PARTE 1

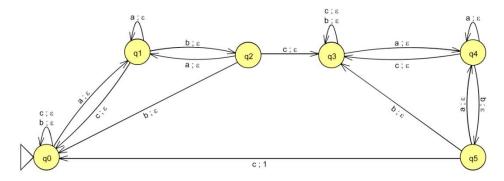
Obtenha um autômato finito mínimo que seja equivalente ao autômato abaixo. Prove que ele é mínimo.



Seja q_7 o estado usado para tornar a função de transição total. Então, as classes de equivalência são $\{q_0\}$, $\{q_3\}$, $\{q_1,q_4\}$ e $\{q_2,q_5,q_6\}$:



- Obtenha um transdutor finito (Mealy ou Moore) que aceite como entrada cadeias sobre $\{a, b, c\}$ e gere na saída uma cadeia que representa um número em unário correspondente à n/2 (divisão inteira), onde n é a quantidade de ocorrências da subcadeia abc na cadeia de entrada. Exemplos:
 - entrada a<u>abc</u>b<u>abc</u>c, saída 1;
 - entrada $ab\underline{abc}$ acbc, saída ε ;
 - entrada a<u>abc</u>bb<u>abccabc</u>b<u>abcabc</u>, saída 11.



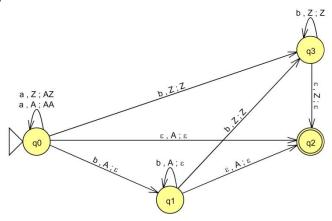
03) Prove que a linguagem $L = \{a^i b^j \mid i \neq j\}$ é livre de contexto.

Alternativa 1 - Gramática livre de contexto:

$$S \rightarrow A W \mid W B$$

 $W \rightarrow a W b \mid \epsilon$
 $A \rightarrow a A \mid a$
 $B \rightarrow b B \mid b$

Alternativa 2 - Autômato de pilha:



Z é o símbolo inicial da pilha (Z_0) . O critério de aceitação é por estado final.

Alternativa 3 - Propriedades de fechamento das linguagens livres de contexto

Como $L_0=\{a^ib^j\ \big|\ i=j\}$ é livre de contexto (S \to a S b \mid ϵ), assim como $L_1=a^+$ e $L_2=b^+$, e como as linguagens livres de contexto são fechadas em relação às operações de concatenação e união, segue que $L=L_1L_0\cup L_0L_2$ também é livre de contexto.

04) Prove que a linguagem $L = \{ba^ib^{2i} \mid i \ge 1\}$ não é regular.

Suponha que L seja regular e seja n a constante do Pumping Lemma. Seja $w=ba^nb^{2n}\in L$, $|w|=3n+1\geq n$. Então w=xyz, $|xy|\leq n$, $|y|\geq 1$. Portanto, a cadeia xy é um elemento de ba^* . Logo, y é:

- b, ou
- um elemento de ba^+ (ba, baa, baaa, ...), ou
- um elemento de a^+ (a, aa, aaa, ...).

Em todos os casos, $xz \notin L$ pois a eliminação de y da sentença original remove o símbolo b do início (nos dois primeiros casos) ou desbalanceia a quantidade de símbolos a (no terceiro caso). Portanto a hipótese é falsa e L não é regular.

- O5) Qual o tipo da linguagem $L \subseteq \{a, b, c\}^*$ definida abaixo? Prove sua resposta. Seja $w \in L$. Então:
 - $|w|_a$ é par, e
 - |w| é múltiplo de 3, e
 - $w = \alpha abc\beta$, com $\alpha, \beta \in \{a, b, c\}^*$, e
 - w não possui aa como prefixo.

 $|w|_a$ é par é regular: $((b|c)^*a(b|c)^*a(b|c)^*)^*$

|w| é múltiplo de 3 é regular: $((a|b|c)(a|b|c)(a|b|c))^*$

 $w = \alpha abc\beta$ é regular: $(a|b|c)^*abc(a|b|c)^*$

w não possui aa como prefixo é regular: $(ab|ac|b|c)(a|b|c)^*$

Como as linguagens regulares são fechadas em relação à operação de intersecção, segue que L é regular.

PART	PARTE 2			
01)	Se uma ling	guagem L é regular, então:		
- ,		Existe uma gramática linear à direita que gera L , mas pode ser que não exista nenhum autômat finito que reconheça L ;		
	X	Existe pelo menos uma gramática linear à direita que gera L , um autômato finito que reconhece L e uma expressão regular que gera L ;		
		É possível garantir a existência de uma expressão regular que gera L , mas não de uma gramática linear à direita ou de um autômato finito que gere/reconheça L ;		
		É possível garantir a existência de um autômato finito não-determinístico que reconhece L , mas não de uma expressão regular que gera L .		
02)	Um estado	q_a é dito equivalente à um estado q_b quando:		
		Todas as cadeias aceitas a partir do estado q_a são tambem aceitas a partir do estado $q_b;$		
		Todas as cadeias aceitas a partir do estado $q_b $ são tambem aceitas a partir do estado q_a ;		
	X	Todas as cadeias aceitas a partir do estado q_a são também aceitas a partir do estado q_b e viceversa;		
		Pelo menos uma mesma cadeia é aceita a partir tanto de q_a quanto de q_b .		
03)	Se um autó	Se um autômato finito A é mínimo, então (assinale a alternativa FALSA):		
	X	Pode ser que exista um autômato B diferente (em relação às transições), que aceite a mesma linguagem, mas com o mesmo número de estados de A ;		
		Não existem dois estados equivalentes em A ;		
		Ele é único;		
		Não existe outro que aceite a mesma linguagem e possua um número menor de estados (a		
		menos de um único estado inútil).		
04)	Se <i>L</i> é uma	a linguagem regular infinita e $lpha\in L$, $ lpha \geq n$, onde n é a constante do Pumping Lemma para as		
	linguagens	regulares, então (assinale a alternativa FALSA):		
		$\alpha = xyz$, com $1 \le y \le \alpha $ e $xy^iz \in L$, para todo i ;		
		$\alpha = uvwxy$, com $ vwx \le n$, $ vx \ge 1$ e $uv^iwx^iy \in L$, para todo i ;		
	X	$\alpha = xyz$, com $1 \le y \le n$ e $xy^iz \in L$, apenas para $i \ge n$;		
		$\alpha = unwrv \text{ com } 1 < uwr < n + u(uwr)^i v \in I$ nara todo i:		

05)	Seja L aceita por um autômato finito A com $Q=\{q_0,q_1,q_2\}$ e $\Sigma=\{a,b,c,d\}$, e suponha que A aceite a cadeia $abcd$. Logo:		
	L(A) é finita;		
	$X_{\underline{\hspace{1cm}}}$ $L(A)$ é infinita;		
	Não se pode afirmar nada sobre a finitude ou infinitude de $L(A)$ sem examinar cadeias de comprimento menor que 3;		
	Não se pode afirmar nada sobre a finitude ou infinitude de $L(A)$ sem examinar cadeias de comprimento maior ou igual a 6.		
06)	Se uma gramática G é ambígüa, então (assinale a alternativa FALSA):		
00,	Existe pelo menos uma sentença pertencente à $L(G)$ com duas derivações mais à esquerda		
	diferentes;		
	Existe pelo menos uma sentença pertencente à $L(G)$ com duas derivações mais à direita		
	diferentes;		
	Existe pelo menos uma sentença pertencente à $L(G)$ com duas árvores de sintaxe diferentes;		
	X Todas as sentenças de $L(G)$ possuem duas ou mais derivações mais à esquerda diferentes.		
07)	A simplificação de gramáticas livres de contexto envolve:		
	Minimização do número de símbolos não-terminais;		
	Conversão para a Forma Normal de Chomsky ou a Forma Normal de Greibach;		
	Minimização do número de regras de produção;		
	X Eliminação de símbolos inúteis e inacessíveis, eliminação de regras vazias e de regras unitárias.		
08)	Seja L uma linguagem aceita por um autômato de pilha M com critério de aceitação estado final. Então:		
	$\underline{\hspace{1cm}}$ É possível construir um autômato de pilha com critério de aceitação pilha vazia N tal que		
	$L(M) = L(N)$ apenas se $\varepsilon \notin L(M)$;		
	É possível construir um autômato de pilha com critério de aceitação pilha vazia N tal que $L(M) = L(N)$ apenas se M for determinístico;		
	Não é possível garantir, no caso geral, a existência de um autômato de pilha com critério de		
	aceitação pilha vazia N tal que $L(M) = L(N)$;		
	$X_{}$ É sempre possível construir um autômato de pilha com critério de aceitação pilha vazia N tal que		
	L(M) = L(N).		
09)	Ambos os Pumping Lemma (para as linguagens regulares e para as linguagens livres de contexto) exploran		
	algum tipo de finitude nas representações formais das linguagens de cada uma dessas classes. Essas finitude são, respectivamente:		
	A quantidade de sentenças que fazem parte dessas linguagens;		
	O tamanho das sentenças que fazem parte das linguagens;		
	A quantidade de estados do autômato finito e do autômato de pilha que reconhecem essas		
	linguagens;		
	X A quantidade de estados do autômato finito que reconhece a linguagem e a quantidade de		
	símbolos não-terminais da gramática que gera a linguagem.		
10)	Se $L(G)$ é uma linguagem livre de contexto, então:		
	$___$ $L(G)$ pode ser reconhecida por um autômato de pilha determinístico;		
	X $L(G)$ pode ser reconhecida por um autômato de pilha não-determinístico;		
	$___$ $L(G)$ pode ser reconhecida por autômato finito não-determinístico;		
	L(G) é infinita.		
11)	Se G é uma gramática livre de contexto e $\varepsilon \notin L(G)$, então (assinale a alternativa FALSA):		
	$L(G)$ é sensível ao contexto;		
	L(G) pode ser regular;		

		L(G) pode ser finita;			
	X	L(G) é não-regular.			
12)	Numa Máquina de Turing com fita limitada, o cursor da fita pode:				
		Se deslocar para a esquerda e para a direita, mas apenas para fazer leituras;			
		Ler e escrever, mas apenas se deslocando para a direita;			
		Se deslocar apenas para a direita, e ele pode fazer apenas leituras;			
	X	Se deslocar para a esquerda e para a direita, e pode tanto ler quanto escrever.			
13)	Quantas configurações diferentes uma Máquina de Turing com fita limitada pode assumir quando a cadeia				
	de entr	de entrada é abc ? Suponha que $Q=\{q_0,q_1,q_2\}$ e $\Gamma=\{a,b,c,X,Y\}$.			
		125			
	X	1.875			
		375			
		1.125			