Thoughts on Continuous Change Simulation Lan-
guages

Ebrtor:

Authors Teichroew and Lubin [CACM 9, 10 (Oct. 66)] deserve
credit for their excellent paper on Simulation Languages. As a
member of ‘“the other camp,” which is concerned with “con-
ftinuous systems simulation languages,’’ I am particularly grateful
lor the insight gained from the analysis of discrete event simu-

ators.

The authors included a brief discussion of “‘continuous-change
simulation languages’’ and gave reference to the appropriate
literature on the subject. I should like here to add some thoughts
on this topic, within the framework of the subject paper. First, let
me comment that the Simulation Software Committee of the
Simulation Councils, Inc. (an AFIPS member) was formed in 1965
for the express purpose of preparing language standards for the
class of simulation languages it has chosen to call “continuous
system simulation language’’ (CSSL). As noted by Teichroew and
Lubin, there have been many such programs developed since the
first one in 1957—the count is at least 23. The committee expects
to publish the completed standard this spring.

It is customary in casual discussion to distinguish between the
two classes of languages by use of the terms ‘““continuous’ and
“diserete’’ simulations. While it is true that these words char-
acterize the typical models represented in the two kinds of lan-
guages, I conclude from these authors that such a distinction is not
fundamental to the structure of the language, given appropriate
programming or “activity subroutines.’’ I suspect that CSL can
approximate continuous simulation, and that a present-day CSSL
certainly can represent discrete behavior.

The distinction that 7s fundamental is characterized by these
excerpts:

CSSL: the system simulation consists of ““a continuous flow
of information or material counted in the aggregate rather than
individual items.”’

“Discrete’” Simulators: ‘“tems flow through the system.”’
“This type of simulation consists. . . in keeping track of where
individual items are,” (italics mine)

It is possible with CSSL to represent flow of discrete items
through a system, as well as queueing and actions that are condi-
tional upon the size of the queue. However, the flow of items must
be homogeneous: individual items cannot be distinguished; core
space is not required for all items of a queue, only the current size
of the queue is retained.

The authors have taken care in clarifying the terminology of the
languages analyzed. Moreover, they have suggested a basic set of
terms, in the legends of the tables. Looking at these from a dif-
ferent point of view, I detect a conflict in the definition of what is
being simulated, i.e., the “simuland,” to use the term proposed
by John McLeod, editor of Simulalion magazine. The authors
say: “There appears to be general agreement that the distinction
between objects being simulated, properties of these objects, data
describing the environment, and lists of objects having a particu-
lar property is useful in formulating a simulation model and
should be retained in future discrete-change simulation languages.
However, the mechanics of this definition can become burden-
some.”” In Table ITI.1, item 1 is called the ‘“‘object being simu-

VYolume 10 / Number 8 / August, 1967

lated: fundamental element (Record).” These are the discrete
entities that flow through the model (which are not representable
as distinet entities in a CSSL). Next, item 4 is ‘‘data about the
environment (variables).”” Elsewhere these are referred to as
‘“data about the simulated world.”” I submit that it is clearer (and
perhaps more accurate) to speak of the simuland as the simulated
system (the model and its environment; or the process) which has
variables and parameters; the latter being changed from case to
case. The objects, or entities, that enter the simulated system are
simulated input data that are processed by the model. These are
analogous to ‘“foreing functions’” in CSSL terminology.

T. D. TrurrT

Electronics Associates, Inc.

Princeton, New Jersey 08546

Bohm and Jacopini’s Reduction of Flow Charts

EpiTor:

In the first part of the paper by Bohm and Jacopini, “Flow
Diagrams, Turing Machines and Languages with Only Two Forma-
tion Rules” [Comm. ACM 9, 5 (May 1966)], it is proved that any
program may be mechanically transformed into an equivalent
program whose flowchart is ‘‘decomposable into IL & A ”’, This last
phrase means that all loops are properly nested; this conecept is
equivalent to the block form I have defined in “Some Transforma-
tions and Standard Forms of Graphs, with Applications to Com-
puter Programs,” to be published shortly (in Machine Intelligence
2, D. Michie, Ep., Oliver and Boyd, Edinburgh). However, even
by making the same assumptions as Bshm and Jacopini a stronger
reduction than theirs is possible.

In order to prove their result, Bhm and Jacopini introduce new
Boolean variables into the program (or equivalently a single
Boolean stack, but a bound for the maximum depth required for
this stack may easily be given). As they point out, it is not usually
necessary to add a new concept such as ‘“Boolean variable” be-
cause in most applications we would expect to find some existing
concept which would serve the same purpose. However, for simpler
exposition we assume new variables have been added. New predi-
cates to test these variables are also needed, together with as-
signments to set them true or false.

If we allow these additions to a program, then it is clear that
any two nodes (P and @) of the directed graph which is the pro-
gram’s flowchart may be coalesced into one new node N. The node
N has as input all the arcs leading into P and also all those leading
into @, and similarly for the outputs. Loops PP or @Q do not effect
this argument. A new Boolean variable, By , is introduced and
instructions added to set it true on all arcs originally leading into
P, and false on those originally leading into @. By testing this
variable the correct output arc of N may be chosen. By repeating
this process, all the nodes of a program may be collapsed into a
single node; the resulting program will have a trivial flowchart
consisting of node A with loops A4 and arcs to A from the input
and from 4 to the output. In Béhm and Jacopini’s terminology we
have reduced the program to one whose flowchart is decomposable
into T, ®, and A, with at most one ®.

The result may be illustrated using ALGoL as follows: Let Lo and
L, be labels on the start and exit, respectively, of a program P,
and let L, , --- , Ln_1 be all the other labels. For0 <7 < n—1 and
0 < j £ n,let P;,; be the condition for control to pass from L; to L;

(Letters are coniinued on page 4783)

Communications of the ACM 463



practical limit since higher-dimensional objects are pres-
ently too detailed to be displayed adequately by the com-
puter.

Discussion

At first it was thought that the computer-generated
movies of the four-dimensional hyperobjects might result
in some ‘“feeling”” or insight for the visualization of a fourth
spatial dimension. In particular, perhaps some visualiza-
tion of a solid four-dimensional hyperobject would be
gained from the distortions in the three-dimensional per-
spective projection. Unfortunately, this did not happen,
and we are still as puzzled as the inhabitants of Flatland in
attempting to visualize a higher spatial dimension.

However, the importance of the techniques presented
in this paper is the use of a digital computer to generate
visual displays of the three-dimensional projections of the
hyperobjects. Such displays of rotating hyperobjects could
be produced most efficiently by a computer since the pro-
jections and drawing would be too tedious and impractical
to produce by any other method. Although no actual mental
visualization of the fourth dimension resulted from the
computer-generated displays, it was at least possible to
visually display the projections and be puzzled in attempt-
ing to imagine the rigid four-dimensional hyperobject. Of
course, these techniques should be useful in displaying data
with more than three variables.

The movies have already been useful in extending
knowledge of three-dimensional perspective projections to
higher dimensions. The techniques have been applied to
real-time graphical displays so that the user can rotate,
translate, and manipulate hyperobjects and hyperdata
and immediately see the results on a graphical display.

Acknowledgments. Grateful acknowledgment is made to
Dr. D. E. Eastwood, Dr. M. V. Mathews, Dr. M. R.
Schroeder, and Dr. M. M. Sondhi for their lively discus-
sions, enthusiasm, and mathematical assistance in the
multidimensioned aspects of this hyperdimensional project.

Recr1rvED FEBRUARY 1967; REVISED APRIL, 1967

REFERENCES

1. AssorT, EpWIN A., Flatland. Dover Publications, Inc., New
York, 1952,

2. BoERNER, HERMANN. Representations of Groups. North-Hol-
land Publishing Co., Amsterdam, 1963.

3. Coxerer, H. 8. M. Regular Polytopes. The Macmillan Co.,
New York, 1963.

4. Kenvarr, M. G. A Course In the Geometry of n Dimensions.
Hafner Publishing Co., New York, 1961.

5. MUrRNAGHAN, Francis D. The Unitary and Rotation Groups.
Spartan Books, Washington, D. C., 1962.

6. Norr, A. MicuasL. Computer-generated three-dimensional
movies. Comput. Autom. 14, 11 (Nov. 1965), 20-23.

7. SommERVILLE, D. M. Y. An Introduction to the Geometry of
N Dimensions. Dover Publications, Inc., New York, 1958.

8. STROMBERG, GusTaF. Space, time, and eternity. J. Franklin
Inst. 272, 2 (Aug. 1961), 134-144,

Volume 10 / Number 8 / August, 1967

LETTERS—Continued from p. 463

without passing any other label, and let S;,; be the sequence of
assignment statements obeyed on this path. Define new Boolean
variables Bo, By, -+, B.. Then P is equivalent to the program:
START: By« true; B;« false; ---; B, false;
L: if B, then go to EXIT;
if Bo /\ P o0 then begin By := false; Soo ;
By := true end else

if B; A\ Pi,; then begin B; := false; S;;;
B; := true end else

if Bo1 A\ Pu_i,» then begin B, ; := false; S._1.x;
B, := true end;
go to L;
EXIT:
This program has a trivial flowchart of the form indicated above.
Bohm and Jacopini are interested in reducing as far as possible
the number of concepts used and it is then reasonable to code up
previous flow of control into variables, as this can usually be done
within the existing framework. If, however, one’s motivation is to
simplify the program’s structure so that we may better answer
questions such as whether the program loops indefinitely, then
this coding of the control into variables is no help at all. Tt remains
true though that the block form is a very natural standard form
to use, and it is certainly possible to transform many programs
into equivalent programs in block form without resorting to the
coding of control features as values of variables. Some preliminary
conjectures along this line are reported in my paper referred to
above. Davip C. Cooprer
Carnegte Institute of Technology
Prittsburgh, Pennsylvania 15213

A Comment on Galler’s Letter

Ep1TOR:

I find Mr. Galler’s letter to the membership [Comm. ACM 10,
5 (May 1967)] a well-intended guide to penetrating the ACM power
structure. ‘“Fred Jones,” a typical programmer with some ideas
about file structures, starts in Mr. Galler’s account as an unknown,
and rises until ‘““he may even find himself a subcommittee chair-
man.”’ This up-note ending is as unquestioned as that in a classic
Hollywood movie, until Mr. Galler adds, “It could happen to
almost anyone—it did to some of us.” To me, that is an
unwittingly frank statement of a menace.

Committees don’t often discover anything. If Fred Jones’ ideas
about file structures are genuinely good, he should indeed spread
them around, and he should listen to and benefit from the related
ideas of others; the network of committees and meetings is admir-
ably suited for this. But he should also pursue his ideas further,
which might best be done by not finding himself a subcommittee
chairman. With the surplus of “joiner’’ activities in the computer
field, a line should be drawn as to how many to take part in.

If such a line is not drawn, as in Mr. Galler’s otherwise excellent
editorial, the ereative accomplishments possible outside the mech-
anisms of ‘‘the establishment” of committees, meetings, and
block-diagram power structures will be killed. In fact, some
totally, perversely independent types, I believe, might contribute
at least as much to computer science as do the unquestioning
joiners of committees. Self-directed, intensive thought and re-
search, as well as some mellow, not-geared-to-the-minute reflec-
tivity, is needed in this computer game.

JERRY A. RaLya
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Communications of the ACM 473



