Conceitos de Análise Sintática

Pro.f. Marcus Ramos

UNIVASF

Atualizado em 13 de abril de 2025 às 11:13

Referências

The Theory of Parsing, Translation and Compiling Volume I: Parsing Alfred V. Aho Jeffrey D. Ullman Prentice Hall 1972

Programming Language Processors in Java Compilers and Interpreters D. A. Watt

D. F. Brown

Pearson Education 2000

Derivações e Reduções

- Regras gramaticais possuem o formato geral $\alpha \to \beta$
- DERIVAÇÃO: subsituição do lado esquerdo de uma regra gramatical (α) pelo lado direito correspondente (β) na forma sentencial corrente;
- **REDUÇÃO**: subsituição do lado direito de uma regra gramatical (β) pelo lado esquerdo (α) correspondente na forma sentencial corrente;



Exemplo

- Considere a gramática:
 - $S \rightarrow XY$
 - $X \rightarrow aX \mid b$
 - $Y \rightarrow cY \mid d$
- Considere a forma sentencial aXcY
- Exemplo de derivação: $aXcY \Rightarrow aaXcY$
- Exemplo de redução: $aXcY \Rightarrow XcY$
- Em ambos os casos, foi usada a regra $X \rightarrow aX$.

Derivações mais à esquerda

- Uma seqüência de derivações é dita "mais à esquerda" quando todas as derivações são feitas sempre sobre os símbolos não-terminais situados mais à esquerda na forma sentencial corrente;
- Exemplo (usando a gramática anterior):

```
S \Rightarrow XY \Rightarrow aXY \Rightarrow abY \Rightarrow abcY \Rightarrow abcd
```

Derivações mais à direita

- Uma seqüência de derivações é dita "mais à direita" quando todas as derivações são feitas sempre sobre os símbolos não-terminais situados mais à direita na forma sentencial corrente;
- Exemplo (usando a gramática anterior):

$$S \Rightarrow XY \Rightarrow XcY \Rightarrow Xcd \Rightarrow aXcd \Rightarrow abcd$$

Reduções mais à esquerda

- Uma seqüência de reduções é dita "mais à esquerda" quando todas as reduções são feitas sempre sobre subcadeias que correspondem ao lado direito de regras e estão situadas mais à esquerda na forma sentencial corrente;
- Exemplo (usando a gramática anterior): $abcd \Rightarrow aXcd \Rightarrow Xcd \Rightarrow XcY \Rightarrow XY \Rightarrow S$
- Observar que uma seqüência de reduções mais à esquerda corresponde sempre à ordem inversa de uma seqüência de derivações mas à direita;
- De fato, no exemplo acima:
 S ⇒ XY ⇒ XcY ⇒ Xcd ⇒ aXcd ⇒ abcd
 É uma seqüência de derivações mais à direita (as mesmas formas sentenciais aparecem em ordem invertida);
- Da mesma forma, é possível definir uma seqüência de reduções mais à direita (correspondendo à ordem inversa de uma seqüência de derivações mais à esquerda).

Determinismo x Não-determinismo

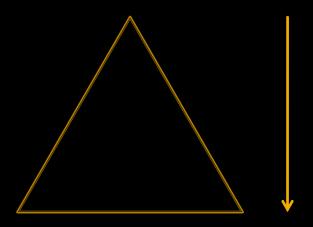
O principal objetivo da análise sintática é:

- Descobrir as regras que foram usadas na geração da cadeia dada (se existir tal conjunto de regras);
- Para isso, é usada a gramática livre de contexto que gera a linguagem sendo analisada;
- Mesmo fixando uma ordem de derivação (por exemplo mais à esquerda), ainda é possível que um certo nãoterminal possua várias alternativas de substituição;
- Por exemplo, $A \rightarrow \beta_1 \mid ... \mid \beta_n$

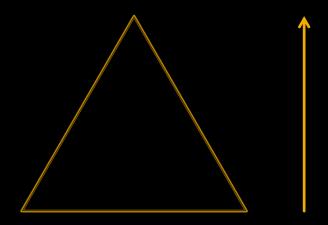
Determinismo x Não-determinismo

- Então, como escolher de forma determinística a regra em questão para cada não-terminal?
- Mesmo que haja uma única opção, como garantir que ela pode ser usada?
- A escolha não-determinística sempre funciona, mas onera muito o tempo da análise sintática;
- O tempo é o maior possível justamente quando há erros no programa-fonte;
- Então, como escolher de forma determinística a regra em questão?
- Resposta: análise descendente ou ascendente.

- Os movimentos do reconhecedor correspondem ao uso de derivações mais à esquerda;
- A árvore de sintaxe é montada de cima para baixo (da raiz em direção às folhas);
- Caracteriza a classe das gramáticas (e linguagens) LL(k);
- Leitura do arquivo-fonte da esquerda para a direita;
- Emprego de <u>derivações mais à esquerda</u> (na ordem direta);
- Uso de no máximo k símbolos de lookahead.



- Os movimentos do reconhecedor correspondem ao uso de derivações mais à direita;
- A árvore de sintaxe é montada de baixo para cima (das folhas em direção à raiz);
- Caracteriza a classe das gramáticas (e linguagens) LR(k);
- Leitura do arquivo-fonte da esquerda para a direita;
- Emprego de <u>derivações mais à direita</u> (na ordem inversa), ou seja, reduções mais à esquerda (na ordem direta);
- Uso de no máximo k símbolos de lookahead.



Definição de first_k(α)

Seja G=(V, Σ , P, S) uma gramática livre de contexto, $\alpha \in V^*$ e k inteiro.

```
first<sub>k</sub> (\alpha) = {w \in \Sigma^* | (\alpha \Rightarrow * w e |w|<k) ou (\alpha \Rightarrow * wx e |w|=k para algum x)}
```

first $_{k}$ (α) é um conjunto de cadeias de símbolos terminais. Ele é formado por:

- prefixos de comprimento k de todas as cadeias que podem ser geradas a partir de α pela aplicação das regras de G;
- todas as cadeias de comprimento menor que k que são geradas por α pela aplicação das regras de G.

Exemplos

- Considere a gramática:
 - $S \rightarrow XY$
 - $X \rightarrow aX \mid b$
 - $Y \rightarrow cY \mid d$
- $first_1(aX) = \{a\}$
- $first_1(b) = \{b\}$
- $first_1(XY) = \{a, b\}$
- $first_1(S) = \{a, b\}$
- $first_2(aX) = \{aa, ab\}$
- $first_2(b) = \{b\}$
- $first_2(XY) = \{aa, ab, bc, bd\}$
- etc.

Gramática LL(k)

Seja $G=(V, \Sigma, P, S)$ uma gramática livre de contexto. G é dita LL(k), para algum inteiro k, se, para quaisquer duas seqüências de derivações mais à esquerda:

- 1. $S \Rightarrow * wA\alpha \Rightarrow w\beta\alpha \Rightarrow * wx$
- 2. $S \Rightarrow * wA\alpha \Rightarrow w\gamma\alpha \Rightarrow * wy$

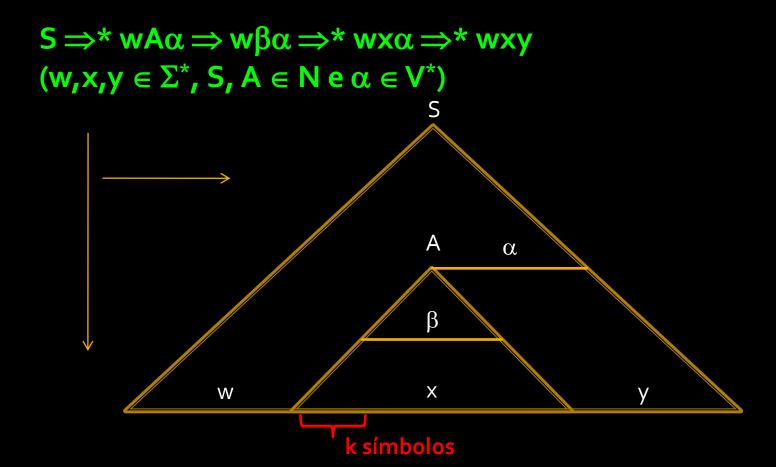
tais que first_k (x) = first_k (y), isso implicar $\beta = \gamma$.

A escolha da derivação para o símbolo não-terminal A na forma sentencial $wA\alpha$ é feita de maneira unívoca a partir da análise dos k primeiros símbolos terminais gerados por $A\alpha$.

Em outras palavras: sempre que houver uma única regra em G que permita gerar os k primeiros símbolos terminais de x a partir de A na forma sentencial $wA\alpha$.

Gramática LL(k)

Considere a seqüência de derivações mais à esquerda e o uso da regra $A \rightarrow \beta$:



micro English

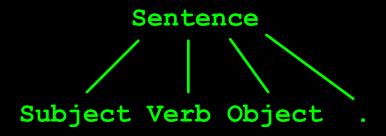
```
Sentence::= Subject Verb Object .
Subject ::= I | a Noun | the Noun
Noun ::= rat | cat | dog
Verb ::= is | see | sees | like
Object ::= me | a Noun | the Noun
```

```
the cat sees a dog.
```

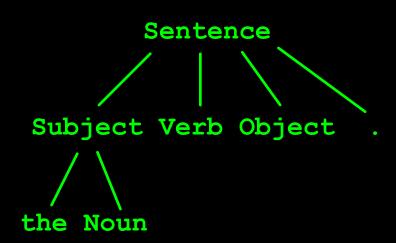
```
Sentence \Rightarrow Subject Verb Object .
```

 O lookahead "the" é usado para selecionar a regra:
 Sentence → Subject Verb Object .

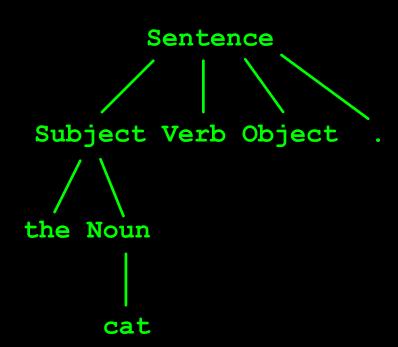
the cat sees a dog.



the cat sees a dog.



```
the cat sees a dog.
```



the cat sees a dog.

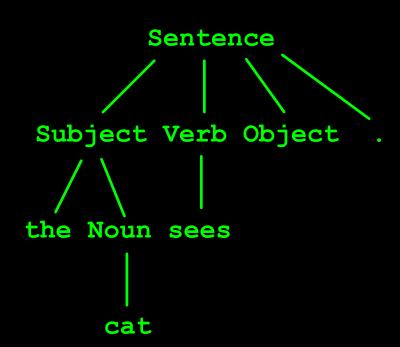
regra:

Verb → sees

```
Sentence ⇒
Subject Verb Object . ⇒
the Noun Verb Object . ⇒
the cat Verb Object . ⇒
the cat sees Object .

• O lookahead "sees" é usado para selecionar a
```

```
the cat sees a dog.
```

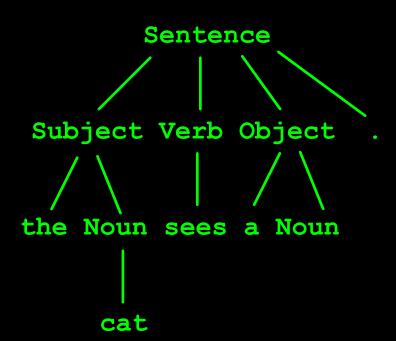


```
the cat sees a dog.
Sentence ⇒
Subject Verb Object . \Rightarrow
the Noun Verb Object . \Rightarrow
the cat Verb Object . \Rightarrow
the cat sees Object . \Rightarrow
the cat sees a Noun .

    O lookahead "a" é usado para selecionar a

  regra:
  Object → a Noun
```

```
the cat sees a dog.
```

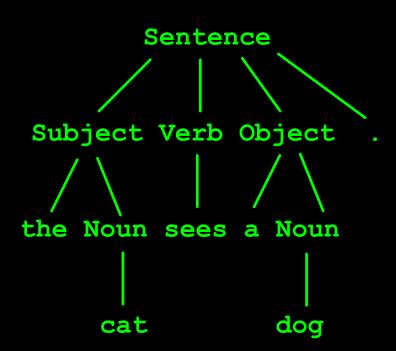


```
the cat sees a dog.
Sentence ⇒
Subject Verb Object . \Rightarrow
the Noun Verb Object . \Rightarrow
the cat Verb Object . \Rightarrow
the cat sees Object . \Rightarrow
the cat sees a Noun . \Rightarrow
the cat sees a dog .
 O lookahead "dog" é usado para selecionar a
```

regra:

Noun → dog

the cat sees a dog.



Gramática LR(k)

Seja G=(V, Σ , P, S) uma gramática livre de contexto. G é dita LR(k), para algum inteiro k, se, para quaisquer duas seqüências de derivações mais à direita:

- 1. $S \Rightarrow * \alpha Aw \Rightarrow \alpha \beta w$
- 2. $S \Rightarrow * \gamma Bx \Rightarrow \alpha \beta y$

tais que first_k (w) = first_k (y), isso implicar $\alpha = \gamma$, A=B e x=y.

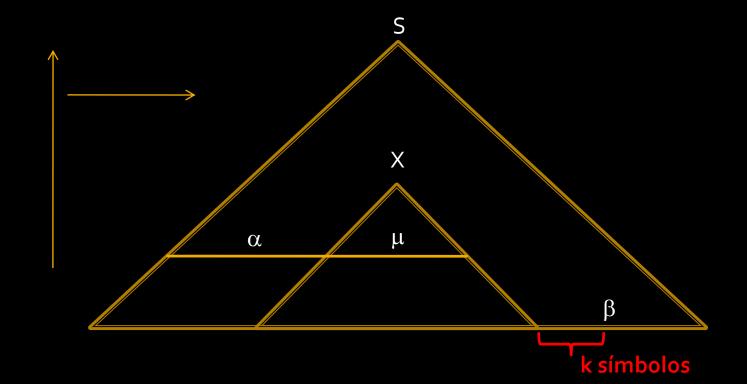
Uma vez identificada, a escolha da redução para a cadeia β é feita de maneira unívoca a partir da análise dos k primeiros símbolos terminais de w.

Em outras palavras: sempre que houver uma única regra em G que permite gerar os k primeiros símbolos terminais de w a partir de A na forma sentencial α Aw.

Gramática LR(k)

Considere a sequência de reduções mais à esquerda:

$$\mathsf{w} \Rightarrow^* \alpha \mathsf{\mu} \beta \Rightarrow \alpha \mathsf{X} \beta \Rightarrow^* \mathsf{S} (\beta, \gamma \in \Sigma^*, \mathsf{S}, \mathsf{X} \in \mathsf{N} \mathsf{e} \alpha, \mu \in \mathsf{V}^*)$$



```
the cat sees a dog .
```

- Nenhuma redução é possível com o símbolo "the" apenas;
- O cursor avança para o próximo símbolo.

```
the cat sees a dog .

↑ "cat" é reduzido para "Noun";
O cursor avança para o próximo símbolo.
the cat sees a dog . ⇒
the Noun sees a dog .
```

```
the cat sees a dog .
```

- "the Noun" pode ser reduzido para "Subject" ou para "Object";
- O lookahead "sees", no entanto, ocorre apenas depois de "Subject";
- Assim, a redução é feita para "Subject";
- O cursor permanece no símbolo corrente.

```
the cat sees a dog . \Rightarrow the Noun sees a dog . \Rightarrow Subject sees a dog .
```

```
the cat sees a dog . \uparrow
```

- Nenhuma redução é possível com o símbolo "a" apenas ou qualquer prefixo da forma sentencial corrente;
- O cursor avança para o próximo símbolo.

```
"a Noun" pode ser reduzido para "Subject" ou para "Object";
O lookahead ".", no entanto, ocorre apenas depois de "Object";
Assim, a redução é feita para "Oject";
O cursor permanece no símbolo corrente.
```

```
the cat sees a dog . \Rightarrow the Noun sees a dog . \Rightarrow Subject sees a dog . \Rightarrow Subject Verb a Noun . \Rightarrow Subject Verb Object .
```

```
the cat sees a dog . \uparrow
```

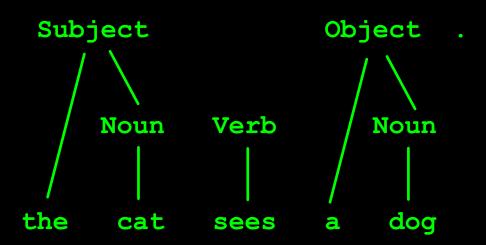
- Nenhuma redução é possível com o símbolo "."
 apenas ou qualquer prefixo da forma sentencial
 corrente;
- O cursor avança para o próximo símbolo.

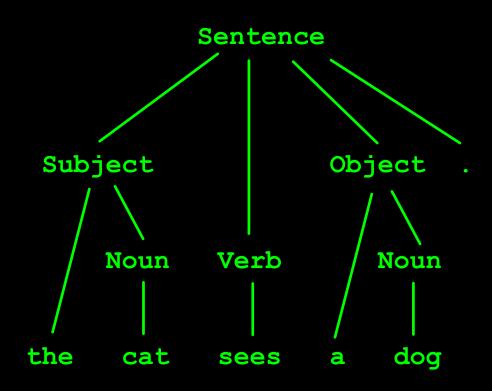
```
the cat sees a dog .
```

- "Subject Verb Object ." é reduzido para "Sentence";
- A análise chega na raiz da gramática e a cadeia de entrada está esgotada;
- A análise ascendente termina.

```
the cat sees a dog . \Rightarrow the Noun sees a dog . \Rightarrow Subject sees a dog . \Rightarrow Subject Verb a dog . \Rightarrow Subject Verb a Noun . \Rightarrow Subject Verb Object . \Rightarrow Sentence
```





Resumo

LL(k):

- Leitura da entrada da esquerda para a direita;
- Ordem direta das derivações mais à esquerda;

LR(k):

- Leitura da entrada da esquerda para a direita;
- Ordem inversa das derivações mais à direita (ou ordem direta das reduções mais à esquerda);

RR(k):

- Leitura da entrada da direita para a esquerda;
- Ordem direta das derivações mais à direita;

RL(k):

- Leitura da entrada da direita para a esquerda;
- Ordem inversa das derivações mais à esquerda (ou ordem direta das reduções mais à direita).

- Gramática LL(k) é aquela que gera uma linguagem cujas sentenças podem ser analisadas de forma descendente, ou "topdown";
- Gramática LR(k) é aquela que gera uma linguagem cujas sentenças podem ser analisadas de forma ascendente, ou "bottom-up";
- Uma linguagem é dita LL(k) (ou LR(k)) se existir pelo menos uma gramática LL(k) (ou LR(k)) que a gere.

- Nem toda LLC pode ser analisada de forma determinística;
- O maior subconjunto das LLCs que podem ser analisadas de forma determinística corresponde ao conjunto das linguagens LR(k);
- Toda linguagem que é analisada de forma descendente pode também ser analisada de forma ascendente;
- Nem toda linguagem que é analisada de forma ascendente por ser analisada de forma descendente;
- As linguagens regulares formam um subconjunto próprio das linguagens LL(k);
- Gramáticas LL(k) e LR(k) são não-ambíguas.

- Problema decidível:
 - G é LL(k) para um dado valor de k?
 - G é LR(k) para um dado valor de k?
- Problemas indecidíveis:
 - Existe algum valor de k tal que G seja LL(k)?
 - Se G não é LL(1), existe alguma gramática G' tal que G' seja LL(1) e L(G)=L(G')?

Implicações

Uma CFG G=(V, Σ , P, S) é dita LL(k) se e somente se:

- Para cada forma sentencial wAα tal que S ⇒* wAα por meio do uso exclusivo de derivações mais à esquerda, se A → β, A → γ ∈ P, então first_k (βα) = first_k (γα) implicar β=γ.
- Em outras palavras, a escolha da substituição a ser aplicada ao símbolo <u>não-terminal</u> A pode ser feita de forma determinística levando-se em conta a <u>configuração</u> <u>corrente</u> do reconhecedor (wAα) e os <u>k primeiros símbolos</u> terminais gerados pela cadeia Aα.

Implicações

- Na prática, usa-se <u>apenas</u> A e os k símbolos para fazer a escolha determinística da regra a ser utilizada.
- Ou seja, espera-se que a escolha determnística da substituição de A possa ser feita levando-se em conta apenas o lookahead, independentemente da forma sentencial onde A ocorre mais à esquerda;
- Eventualmente, usa-se também w se isso trouxer algum benefício (como por exemplo usar um valor menor de k);
- De qualquer forma, w e α são apenas informação de contexto empregada para fazer um reconhecimento de uma linguagem livre de contexto. É diferente de usar informação de contexto para determinar quais sentenças podem e não podem ser geradas.

Com base na definição anterior (desconsiderando a configuração corrente):

- Suponha A $\rightarrow \beta_1 | \dots | \beta_n$
- Determinar todas as formas sentenciais wAα em que o não-terminal A possa comparecer;
- Verificar, <u>para o conjunto delas</u>, se first_k $(\beta_i \alpha) \cap \text{first}_k$ $(\beta_i \alpha) = \emptyset$ para $1 \le i$, $j \le n$, $i \ne j$;
- Ou seja, se independentemente da forma sentencial a escolha da substituição de A pode ser feita levando-se em conta apenas o lookahead.

Dificuldades decorrentes:

- Determinar todas as formas sentenciais wAα em que A possa comparecer;
- Determinar first_k ($\beta_i \alpha$), especialmente quando β_i não gera cadeias de terminais de comprimento k.

Alternativa usada na prática:

- Considerar, para efeito de escolha da regra a ser aplicada, <u>apenas</u> o não-terminal A em questão e os k símbolos do lookahead;
- Os conjuntos first_k ($\beta_i \alpha$), para cada β_i , neste caso, são calculados levando em conta todas as possíveis cadeias α que possam comparecer do lado direito de A, para todas as formas sentenciais em que A aparece;
- Nem sempre a gramática será LL(k) desta forma, mas quando for isto representará uma simplificação importante em relação ao método anterior.

Alternativa usada na prática:

- Desconsiderar a forma sentencial corrente;
- Verificar, <u>para cada</u> não-terminal da gramática, se as suas regras podem ser escolhidas de forma determinística e qual o menor valor de k em cada caso;
- Cada não-terminal terá, portanto, um valor de k;
- A gramática será LL(k) se todos os não-terminais o forem e, neste caso, o valor do k da gramática será o <u>maior</u> de todos os k dos não-terminais analisados.

Exemplos e estratégias

No **primeiro** exemplo mostrado a seguir:

- A forma sentencial corrente <u>não</u> é considerada;
- A condição LL(1) é verificada para os não-terminais S e X;
- Logo, a gramática é LL(1) e não necessita da forma sentencial corrente.

Exemplos e estratégias

No **segundo** exemplo apresentado a seguir:

- Sem considerar a forma sentencial corrente, o nãoterminal S verifica a condição LL(1);
- Sem considerar a forma sentencial corrente, o nãoterminal A <u>não</u> verifica a condição LL(k) para k=1, 2, 3, 4, 5 etc
- Levando-se em conta a forma sentencial corrente, o não-terminal A verifica a condição LL(3);
- Portanto, levando-se em conta apenas S e A, a gramática é LL(3) e necessita levar em conta a forma sentencial corrente (informação de contexto);
- O nao-terminal B não é analisado.

Exemplo 1:

- $S \rightarrow aX \mid bX$
- $X \rightarrow cX \mid d$

Considere a derivação do não-terminal X. Em quais formas sentenciais ele comparece? Resposta: aX, bX, acX, bcX,accX, bccX, acccX, bcccX etc.

• aX:

```
Se X \rightarrow cX, então aX \Rightarrow acX e first<sub>1</sub> (cX)={c}
Se X \rightarrow d, então aX \Rightarrow ad e first<sub>1</sub> (d)={d}
Como {c}\cap{d}=\emptyset, então a condição LL(1) é válida para a forma sentencial aX;
```

• bX:

```
Se X \rightarrow cX, então bX \Rightarrow bcX e first<sub>1</sub> (cX)={c}
Se X \rightarrow d, então bX \Rightarrow bd e first<sub>1</sub> (d)={d}
Como {c}\cap{d}=\emptyset, então a condição LL(1) é válida para a forma sentencial bX;
```

- Situações idênticas acontecem com todas as demais formas sentenciais (acX, bcX, accX, bccX, acccX, bcccX etc);
- Portanto:
 - Forma sentencial aX, não-terminal X, símbolo corrente c: deve-se escolher a regra X→cX
 - Forma sentencial aX, não-terminal X, símbolo corrente d: deve-se escolher a regra X→d
 - Forma sentencial bX, não-terminal X, símbolo corrente c: deve-se escolher a regra X→cX
 - Forma sentencial bX, não-terminal X, símbolo corrente d: deve-se escolher a regra X→d
 - etc.

- Por outro lado, cabe observar que a escolha da primeira regra (X→cX) gera cadeias que começam sempre pelo símbolo "c", independentemente da forma sentencial considerada; da mesma forma, a escolha da segunda regra (X→d) gera cadeias que iniciam com "d";
- De fato, na lista anterior pode-se perceber que a forma sentencial corrente é irrelevante para se tomar a decisão correta sobre a regra que deve ser aplicada ao nãoterminal A;
- Isso sugere para esse caso, portanto, uma simplificação do processo, desconsiderando a forma sentencial corrente e levando em conta apenas o símbolo não-terminal que está sendo derivado e o lookahead.

Ou seja (válido para esse caso apenas):

A escolha da regra X→cX poderá ser feita sempre que o símbolo corrente for "c", assim como a escolha será pela regra X→d quando o símbolo corrente for "d", sem precisar levar em conta a forma sentencial em que A está sendo derivado.

Exemplo 2:

- No exemplo a seguir, analisamos o caso do não-terminal A;
- Levando-se em conta apenas esse símbolo não-terminal, a gramática é LL(3) se <u>for considerada</u> a configuração (formal sentencial) corrente no momento de se decidir a regra que deve ser escolhida;
- Se forma sentencial corrente <u>não for considerada</u>, veremos que a gramática não é LL(3), nem LL(4) nem LL(5) (e paramos a análise por aí);
- Entretanto, podemos obter uma gramática equivalente que seja LL(4) e também outra LL(1) – ambas sem levar em conta a forma sentencial corrente.

Exemplo 2:

- $S \rightarrow aAaB \mid bAbB$
- $A \rightarrow a \mid ab$
- $B \rightarrow aB \mid a$

Considere a derivação do não-terminal A. Em quais formas sentenciais ele comparece? Resposta: aAaB e bAbB.

aAaB:

Se A \rightarrow a, então aAaB \Rightarrow aaaB e first₁ (aaB)={a} Se A \rightarrow ab, então aAaB \Rightarrow aabaB e first₁ (abaB)={a} Como {a} \cap {a} \neq Ø, então a condição LL(1) não é válida para a forma sentencial aAaB;

• bAbB:

Se A \rightarrow a, então bAbB \Rightarrow babB e first₁ (abB)={a} Se A \rightarrow ab, então bAbB \Rightarrow babbB e first₁ (abbB)={a} Como {a} \cap {a} \neq Ø, então a condição LL(1) não é válida para a forma sentencial bAbB;

aAaB:

Se A \rightarrow a, então aAaB \Rightarrow aaaB e first₂ (aaB)={aa} Se A \rightarrow ab, então aAaB \Rightarrow aabaB e first₂ (abaB)={ab} Como {aa} \cap {ab}= \emptyset , então a condição LL(2) é válida para a forma sentencial aAaB;

bAbB:

Se A \rightarrow a, então bAbB \Rightarrow babB e first₂ (abB)={ab} Se A \rightarrow ab, então bAbB \Rightarrow babbB e first₁ (abbB)={ab} Como {ab} \cap {ab} \neq Ø, então a condição LL(2) não é válida para a forma sentencial bAbB;

bAbB:

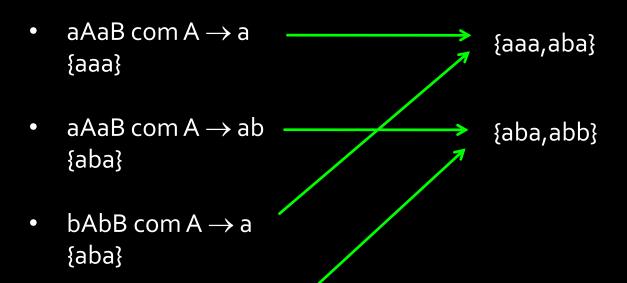
Se A \rightarrow a, então bAbB \Rightarrow babB e first₃ (abB)={aba} Se A \rightarrow ab, então bAbB \Rightarrow babbB e first₁ (abbB)={abb} Como {aba} \cap {abb}= \emptyset , então a condição LL(3) é válida para a forma sentencial bAbB;

 A derivação do não-terminal A requer o lookahead de, no máximo, 3 símbolos.

Em resumo:

- aAaB com A \rightarrow a {aa} (para k=2) ou {aaa} (para k=3)
- aAaB com A → ab
 {ab} (para k=2) ou {aba} (para k=3)
- bAbB com A → a {aba}
- bAbB com A → ab {abb}

Seria possível desconsiderar a forma sentencial corrente nesse caso?



 bAbB com A → ab {abb}

- Como {aaa,aba} ∩ {aba,abb} ≠ Ø, nesse caso não seria possível fazer uma escolha determinística da regra a ser aplicada, sem levar em consideração a forma sentencial corrente.
- Uma alternativa seria verificar se a condição LL(k) seria verificada para valores de k ≥ 4, sem levar em conta a informação de forma sentencial corrente.

k=4

{abaa,abba}

- aAaB com A \rightarrow ab {abaa}
- bAbB com A \rightarrow a {abaa, aba \downarrow }
- bAbB com A → ab {abba}

```
k=5
```

bAbB com A \rightarrow ab

{abba, abbaa}

```
    aAaB com A → a
    {aaa ↓ ↓, aaaaa ↓, aaaaa}
    aba ↓ ↓, abaa ↓, abaaa}
    aAaB com A → ab
    {abaa ↓, abaaa}
    abba ↓, abbaa}
    bAbB com A → a
    {aba ↓ ↓, abaaa}
```

Obtendo uma gramática equivalente LL(4):

```
A \rightarrow a \mid ab

B \rightarrow aa^*

S \rightarrow a (a \mid ab) aaa^* \mid b (a \mid ab) baa^*

S \rightarrow (aa \mid aab) aaa^* \mid (ba \mid bab) baa^*

S \rightarrow aaaaa^* \mid aabaaa^* \mid babaa^* \mid babbaa^*

first_4 (aaaaa^*) = \{aaaa\}

first_4 (babaa^*) = \{baba\}

first_4 (babbaa^*) = \{babb\}
```

Obtendo uma gramática equivalente LL(1):

```
S → aaaaa* | aabaaa* | babaa* | babbaa*
S → a (aaaa* | abaaa*) | b (abaa* | abbaa*)
S → a (a (aaa* | baaa*)) | b (a (baa* | bbaa*))
S → a (a (aaa* | baaa*)) | b (a (b (aa* | baa*)))
```

Quando então se pode dispensar o uso da forma sentencial corrente para fazer a escolha da regra a ser aplicada?

- Considerar o conjunto de todas as formas sentenciais em que A comparece: α_iAγ_i, 1≤i≤m, 1≤j≤n
- Considerar A $\rightarrow \beta_1 | \dots | \beta_k |$
- Seja $X_1 = first_1(\beta_1 \gamma_1) \cup ... \cup first_1(\beta_1 \gamma_n)$
- •
- Seja $X_k = first_1 \overline{(\beta_k \gamma_1)} \cup ... \cup first_1 \overline{(\beta_k \gamma_n)}$
- Se X_i ∩ X_j = Ø, 1 ≤ i, j ≤ k, i ≠ j, então a forma sentencial é irrelevante para a tomada de decisão.

- Para todos os efeitos, a partir de agora, vamos desconsiderar a forma sentencial corrente como informação a ser usada na escolha da regra de derivação;
- Uma gramática será dita LL(k) se a escolha da regra puder sempre ser feita de forma determinística e levando-se em conta <u>apenas</u> o não-terminal corrente e os k símbolos do look-ahead;
- Ainda assim, precisamos lidar com gramáticas com regras que produzem a cadeia vazia, direta ou indiretamente. Quando aplicar a regra vazia?

Definição de follow_k(β)

Seja G=(V, Σ , P, S) uma gramática livre de contexto, $\beta \in V^*$ e k inteiro.

follow_k (
$$\beta$$
) = {w | $S \Rightarrow * \alpha \beta \gamma e w \in first_k (\gamma)$ }

follow_k (β) é o conjunto das cadeias de símbolos terminais que comparecem imediatamente à direita da cadeia β , consideradas todas as formas sentenciais geradas por G em que β faça parte.

Exemplo de follow_k(β)

```
X \rightarrow a

Y \rightarrow bY

Y \rightarrow b

follow_1(X) = \{b\}

follow_1(Y) = \{\#\}

S \rightarrow aSXc\#

X \rightarrow bX

X \rightarrow \varepsilon

follow_1(S) = \{b,c\}

follow_1(X) = \{c\}
```

 $S \rightarrow aXbY\#$

 $X \longrightarrow aX$

Estratégias

Com base na definição anterior:

- $A \rightarrow \beta_1 | \dots | \beta_n$
- Verificar se first_k (β_i .follow_k (A)) \cap first_k (β_j .follow_k (A)) = \emptyset , $1 \le i$, $j \le n$, $i \ne j$;
- Se todos os β_i geram cadeias não-vazias e, além disso, os β_i geram sentenças com k símbolos terminais, então a condição acima é equivalente à:
- Verificar se first_k $(\beta_i) \cap \text{first}_k (\beta_j) = \emptyset$, $1 \le i$, $j \le n$, $i \ne j$.

Casos particulares

- Em seguida serão apresentados alguns casos particulares de gramáticas LL(1);
- Eles tem apenas finalidade didática e estão em ordem crescente de complexidade;
- Cada gramática deve ser analisada conforme as suas especificidades;
- Em todos os casos, utilizamos o critério LL(1) <u>sem</u> <u>considerar a forma sentencial corrente</u>. Ou seja, trata-se de gramáticas que geram linguagens que podem ser analisadas de forma descendente levando-se em conta <u>apenas</u> o não-terminal e o símbolo de entrada corrente.

Casos particulares

Gramáticas LL(1) simples:

- Não existem regras vazias;
- Todas as regras começam com um símbolo terminal;
- As regras de um mesmo não-terminal iniciam com símbolos terminais distintos.

```
A \to \sigma_1 \alpha_1 | \sigma_2 \alpha_2 | \dots | \sigma_n \alpha_n
com \sigma_i \neq \sigma_j \text{ para } i \neq j \text{ e } \sigma_i \in \Sigma, \text{ 1} \leq i \leq n.
```

Exemplo

Gramáticas LL(1) simples:

- $S \rightarrow aS$
- $S \rightarrow bA$
- $A \rightarrow d$
- $A \rightarrow ccA$
- S: $first_1(aS) \cap first_1(bA) = \{a\} \cap \{b\} = \emptyset$
- A: $first_1(d) \cap first_1(ccA) = \{d\} \cap \{c\} = \emptyset$

Casos particulares

Gramáticas LL(1) sem regras vazias:

```
• A \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n

first_1(\alpha_i) \cap first_1(\alpha_i) = \emptyset, i \neq j.
```

Exemplo

Gramáticas LL(1) sem regras vazias:

```
• S' \rightarrow S\#
• S \rightarrow ABe
• A \rightarrow dB \mid aS \mid c
• B \rightarrow AS \mid b
• S':
    first_1(S\#) = first_1(ABe\#) = \{a,c,d\}
S:
    first_1(ABe) = \{a, c, d\}
   A:
    first_1(dB) = \{d\}, first_1(aS) = \{a\}, first_1(c) = \{c\}
   B:
ullet
    first_1(AS) = first_1(dBS) \cup first_1(aSS) \cup first_1(cS) = \{d, a, c\}
    first_1(b) = \{b\}
```

Caso geral

Gramáticas LL(1) com regras vazias:

• $A \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$ $first_1 (\alpha_i.follow (A)) \cap first_1 (\alpha_i.follow (A)) = \emptyset_i i \neq j.$

ou ainda:

• first₁ $(\alpha_i) \cap \text{first}_1 (\alpha_j) = \emptyset$, $i \neq j$, e, se $\alpha_i \Rightarrow * \varepsilon$, então first₁ $(\alpha_i) \cap \text{follow}_1 (A) = \emptyset$, $j \neq i$.

Se o símbolo corrente pertence ao follow₁ (A), a regra A $\rightarrow \varepsilon$ deve ser a escolhida.

Exemplo

Gramáticas LL(1) com regras vazias:

```
• S' \rightarrow A\#
• A \rightarrow iB \leftarrow e
• B \rightarrow SB \mid \varepsilon
• S \rightarrow [eC] \mid .i
• C \rightarrow eC \mid \varepsilon
• S':
     first_1(A\#) = \{i\}
    A:
     first_1(iB\leftarrow e)=\{i\}
   B:
     first_1(SB) \cap follow_1(B) = \{[,.] \cap \{\leftarrow\} = \emptyset\}
   S:
     first_1([eC]) \cap first_1(.i) = \{[\} \cap \{.\} = \emptyset
    C:
     first_1(eC) \cap follow_1(C) = \{e\} \cap \{\} = \emptyset
```

Suponha que σ_1 comparece à direita de X nas formas sentenciais geradas por G, sem uso da recursão à esquerda, e que X seja recursivo à esquerda:

$$S \to X \sigma_1$$
$$X \to X \sigma_2 \mid \sigma_3$$

As formas sentenciais em que X pode comparecer são:

```
X \sigma_{1}

X \sigma_{2} \sigma_{1}

X \sigma_{2} \sigma_{2} \sigma_{1}

X \sigma_{2} \sigma_{2} \sigma_{2} \sigma_{1}

X \sigma_{2} \sigma_{2} \sigma_{2} \sigma_{2} \sigma_{1}

...
```

Qualquer que seja o caso (genericamente, X σ_2^{k-1} σ_1), e qualquer que seja o valor de k, não é possível escolher de forma unívoca uma única substituição para X (X σ_2 ou σ_3), pois as formas sentenciais resultantes X σ_2 σ_2^{k-1} σ_1 e σ_3 σ_2^{k-1} σ_1 possuem sempre a cadeia σ_3 σ_2^{k-1} como elemento comum dos conjuntos first_k () das mesmas.

Senão vejamos:

- Suponha que k=1. Então, se a forma sentencial corrente for X σ_1 e o lookahead for σ_3 , não será possível determinar a regra a ser aplicada. As novas formas sentenciais nestes casos serão, respectivamente, X σ_2 σ_1 e σ_3 σ_1 , e σ_3 é o elemento comum aos dois conjuntos first₁;
- Suponha que k=2. Então, se a forma sentencial corrente for X σ_2 σ_1 e o lookahead for σ_3 σ_2 , não será possível determinar a regra a ser aplicada. As novas formas sentenciais nestes casos serão, respectivamente, X σ_2 σ_2 σ_1 e σ_3 σ_2 σ_1 , e σ_3 σ_2 é o elemento comum aos dois conjuntos first₂;
- Suponha que k=3. Então, se a forma sentencial corrente for X σ_2 σ_2 σ_1 e o lookahead for σ_3 σ_2 σ_2 , não será possível determinar a regra a ser aplicada. As novas formas sentenciais nestes casos serão, respectivamente, X σ_2 σ_2 σ_1 e σ_3 σ_2 σ_2 σ_1 , e σ_3 σ_2 σ_2 é o elemento comum aos dois conjuntos first₃;
- E assim por diante, para qualquer valor de k que se considere.

De outra forma:

- Suponha a gramática anterior e suponha que a regra $X \to X \sigma_2$ foi usada n vezes na derivação de uma cadeia de entrada, produzindo a sentença $\sigma_3 \sigma_2^n \sigma_1$; a forma sentencial corrente é, genericamente, $X \sigma_2^m \sigma_1$, m<=n. Como então escolher uma regra para $X \text{ em } X \sigma_2^m \sigma_1$ de tal forma que a análise seja determinística?
- Observe que o look-ahead σ_3 pertence simultaneamente aos conjuntos first₁ (X σ_2) e first₁ (σ_3); da mesma forma, a cadeia $\sigma_3 \sigma_2$ pertence simultaneamente aos conjuntos first₂ (X σ_2) e first₁(σ_3) e assim por diante até $\sigma_3 \sigma_2^n$; ou seja, a cadeia $\sigma_3 \sigma_2^n$ pertence simultaneamente aos conjuntos first_{n+1} (X σ_2) e first_{n+1}(σ_3); logo, cadeias de comprimento n+1 não permitem fazer a escolha determinística da regra a ser usada;
- Apenas a look-ahead $\sigma_3 \sigma_2^n \sigma_1$ (de comprimento n+2) permite fazer a escolha da regra correta a ser aplicada; se n=0, deve-se usar a regra $X \to \sigma_3$; se n >=1, deve-se usar a regra $X \to X \sigma_2$;
- Mas como não sabemos quantas vezes no máximo a regra X → X σ₂ foi usada na forma sentencial corrente, então não é possível estimar um look-ahead de comprimento máximo para a gramática.

Exemplo:

- Suponha a sentença $\sigma_3 \sigma_1$; neste caso (n=0), basta um look-ahead de comprimento 2 para decidir entre a regra $X \to \sigma_3$ ($\sigma_3 \sigma_1$) e a regra $X \to X \sigma_2$ ($\sigma_3 \sigma_2$) na forma sentencial $X \sigma_1$;
- Suponha a sentença σ_3 σ_2 σ_1 ; neste caso (n=1), basta um look-ahead de comprimento 3 para decidir entre a regra X \rightarrow σ_3 () e a regra X \rightarrow X σ_2 () na forma sentencial X σ_1 ;

$$S \rightarrow Xc$$

 $X \rightarrow Xb \mid a$

Suponha que X é o não-terminal mais à esquerda que deve ser derivado em $\alpha X\beta$:

Lookahead (k)	Primeiros (k) símbolos possíveis de Xβ	Regras possíveis para o caso vermelho
1	a	$X \rightarrow Xb \text{ ou } X \rightarrow a$
2	ac, <mark>ab</mark>	$X \rightarrow Xb \text{ ou } X \rightarrow a$
3	ac, abc, <mark>abb</mark>	$X \rightarrow Xb \text{ ou } X \rightarrow a$
4	ac, abc, abbc, <mark>abbb</mark>	$X \rightarrow Xb \text{ ou } X \rightarrow a$
n	, ab ⁿ⁻¹ ,	$X \rightarrow Xb \text{ ou } X \rightarrow a$

```
S \rightarrow Xc
 X \rightarrow Xb \mid a
```

Suponha que X é o não-terminal mais à esquerda que deve ser derivado:

- k=1(a)
- k=2 (ac ou **ab**)
- k=3 (ac, abc ou **abb**)
- k=4 (ac, abc, abbc ou abbb)
- k=5 (ac, abc, abbc, abbbc ou abbbb)
- k=6 (ac, abc, abbc, abbbc, abbbbb)

Sempre que os k próximos símbolos forem da forma "ab $^{k-1}$ ", não será possível escolher de forma unívoca a aplicação da regra X \rightarrow Xb ou da regra X \rightarrow a, pois ambas permitem chegar no mesmo resultado.

Suponha que num certo ponto da análise a forma sentencial obtida pelo uso exclusivo de derivações mais à esquerda seja wXb^{k-1}. Suponhamos ainda que a entrada neste ponto seja ab^{k-1}. Então, não é possível determinar de forma unívoca a regra a ser usada na substituição de X.

Senão, vejamos:

- Se usarmos a regra X → Xb inicialmente, e depois a regra X → a, obtemos a seqüência:
 - $wXb^{k-1} \Rightarrow wXbb^{k-1} \Rightarrow wabb^{k-1}$
- 2. Se usarmos a regra $X \rightarrow$ a inicialmente, obtemos a seqüência: $wXb^{k-1} \Rightarrow wab^{k-1} \Rightarrow wab^{k-1}$

Em ambos os casos, os k símbolos do lookahead formam a cadeia ab^{k-1}. Logo, não é possível escolher deterministicamente a regra do X, qualquer que seja o valor de k considerado.

$$S \rightarrow Xc$$

 $X \rightarrow Xb \mid a$

Em outras palavras:

- Qualquer que seja o valor de k, será sempre possível se deparar com um lookahead ab^{k-1}, de modo que não será possível determinar de forma unívoca a regra a ser aplicada (X → Xb ou X → a) ao nãoterminal X em questão;
- Sempre existe um lookahead cujo comprimento é maior do que o valor de k considerado, o qual impede que a escolha seja feita de forma determinística;
- Não é possível fazer uma análise determinística em todos os casos e a gramática não é LL(k) para nenhum valor de k.

Gramáticas com recursão à esquerda não são LL(k).

A eliminação das recursões à esquerda pode permitir a obtenção de uma gramática LL(k), mas o resultado não é garantido:

$$S \rightarrow Xc$$

$$X \rightarrow Xb \mid a$$

$$S \rightarrow Xc$$

$$X \rightarrow aY$$

$$Y \rightarrow bY \mid \varepsilon$$

ou simplesmente:

$$S \rightarrow ab^*c$$

Gramática LL(1)

Considere a GLC G:

$$\begin{split} &X_{1} \rightarrow \gamma_{11} \mid \gamma_{12} \mid ... \mid \gamma_{1m} \\ &X_{2} \rightarrow \gamma_{21} \mid \gamma_{22} \mid ... \mid \gamma_{2n} \\ &... \\ &X_{p} \rightarrow \gamma_{p1} \mid \gamma_{p2} \mid ... \mid \gamma_{pq} \\ &\text{first}_{1} \left(\gamma_{1i} \right) \cap \text{first}_{1} \left(\gamma_{1j} \right) = \varnothing, \ 1 \leq i, \ j \leq m, \ i \neq j. \\ &\text{first}_{1} \left(\gamma_{2i} \right) \cap \text{first}_{1} \left(\gamma_{2j} \right) = \varnothing, \ 1 \leq i, \ j \leq n, \ i \neq j. \\ &... \\ &\text{first}_{1} \left(\gamma_{pi} \right) \cap \text{first}_{1} \left(\gamma_{pj} \right) = \varnothing, \ 1 \leq i, \ j \leq q, \ i \neq j. \end{split}$$

e, além disso, se $\gamma_{ij} \Rightarrow * \varepsilon$, então:

$$first_1(\gamma_{ik}) \cap follow_1(X_i) = \emptyset, \forall k \neq j.$$

Note que a forma sentencial corrente não é considerada.

Gramática LL(1) - alternativa

Considere a GLC G:

$$\begin{split} &X_{1} \rightarrow \gamma_{11} \mid \gamma_{12} \mid \dots \mid \gamma_{1m} \\ &X_{2} \rightarrow \gamma_{21} \mid \gamma_{22} \mid \dots \mid \gamma_{2n} \\ &\dots \\ &X_{p} \rightarrow \gamma_{p1} \mid \gamma_{p2} \mid \dots \mid \gamma_{pq} \\ &\text{first}_{1} \ (\gamma_{1i}).\text{follow}_{1}(X_{1}) \ \cap \ \text{first}_{1} \ (\gamma_{1j}).\text{follow}_{1}(X_{1}) = \varnothing, \ 1 \leq i, \ j \leq m, \ i \neq j. \\ &\text{first}_{1} \ (\gamma_{2i}).\text{follow}_{1}(X_{2}) \ \cap \ \text{first}_{1} \ (\gamma_{2j}).\text{follow}_{1}(X_{2}) = \varnothing, \ 1 \leq i, \ j \leq n, \ i \neq j. \\ &\dots \\ &\text{first}_{1} \ (\gamma_{pi}).\text{follow}_{1}(X_{p}) \ \cap \ \text{first}_{1} \ (\gamma_{pj}).\text{follow}_{1}(X_{p}) = \varnothing, \ 1 \leq i, \ j \leq q, \ i \neq j. \end{split}$$

Note que a forma sentencial corrente não é considerada.

Uso de parênteses

Numa regra $X \rightarrow ... (\alpha \mid \beta) ...$

O termo $(\alpha \mid \beta)$ se comporta como se fossem regras de um "símbolo não-terminal anônimo (ou implícito)", representado pelos parênteses;

Ou seja, é como se existisse um certo símbolo não-terminal Y com as regras:

$$Y \rightarrow \alpha \mid \beta$$

Naturalmente, deve-se considerar $X \to \dots (\alpha \mid \beta) \dots$ como $X \to \dots Y \dots$

Independentemente de o não-terminal ser explícito (Y) ou implícito (com regras agrupadas por meio de parênteses), a condição LL(1) deve sempre ser verificada. No caso, deve-se garantir a escolha determinística da regra α ou da regra β por meio de look-aheads apropriados.

Outros exemplos (I)

- $S \rightarrow bS$
- $S \rightarrow bA$
- $A \rightarrow d$
- $A \rightarrow ccA$

Não é LL(1) mas é LL(2):

- S: $first_2(bS) \cap first_2(bA) = \{bb\} \cap \{bd, bc\} = \emptyset$
- A: $first_1(d) \cap first_1(ccA) = \{d\} \cap \{c\} = \emptyset$

Outros exemplos (I)

Pode ser convertida na gramática LL(1) equivalente usando fatoração à esquerda:

```
• S \rightarrow b (S|A)
```

- $A \rightarrow d$
- $A \rightarrow ccA$
- S:
 first₁(b(S|A))={b}
 ():
 first₁(S) ∩ first₁(A)={b}∩{c,d}=Ø
 A:

O parêntesis representa um não-terminal implícito (X):

 $first_1(d) \cap first_1(ccA) = \{d\} \cap \{c\} = \emptyset$

- $S \rightarrow bX$
- $X \rightarrow S \mid A$
- $A \rightarrow d \mid ccA$

Outros exemplos (II)

- $S \rightarrow aX$
- $S \rightarrow aY$
- $X \rightarrow bX \mid c$
- $Y \rightarrow dY \mid e$

Não é LL(1) mas é LL(2):

S:
 first₂(aX) ∩ first₂(aY) = {ab, ac} ∩ {ad, ae} = Ø
 X:
 first₁(bX) ∩ first₁(c) = {b} ∩ {c} = Ø
 Y:

 $first_1(dY) \cap first_1(e) = \{d\} \cap \{e\} = \emptyset$

Outros exemplos (II)

Fatorando à esquerda e agrupando:

- $S \rightarrow a(X \mid Y)$
- $X \rightarrow bX \mid c$
- $A \rightarrow dY \mid e$

Torna-se LL(1), pois:

• (): first₁(X) ∩ first₁(Y) = {b,c} ∩ {d,e} = Ø

Outros exemplos (III)

- $S \rightarrow aXe$
- $X \rightarrow bXY \mid c \mid \varepsilon$
- $Y \rightarrow dY \mid c$
- O não-terminal S satisfaz à condição LL(1) pois há uma única regra para o mesmo;
- O não-terminal Y satisfaz também pois os conjuntos first são disjuntos;
- A gramática, no entanto, não é LL(1) pois X não satisfaz à condição LL(1):
- X:
 first₁(bXY) = {b}
 first₁(c) = {c}
 follow₁(X) = {c,d,e}

Outros exemplos (III)

Tentativa de manipulaçãa gramatical:

- Eliminação da recursão à direita de Y;
- Substituição e eliminação de Y;

Produz a seguinte gramática equivalente:

- $S \rightarrow a (bXd*ce | ce | e)$
- $X \rightarrow bXd*c | c | \epsilon$

Outros exemplos (III)

O não-terminal S satisfaz à condição LL(1) pois:

```
• ():
    first<sub>1</sub>(bXd*ce) = {b}
    first<sub>1</sub>(ce) = {c}
    first<sub>1</sub>(e) = {e}
```

No entanto, o não-terminal X continua não satisfazendo à condição LL(1), pois:

```
• X:
    first<sub>1</sub>(bXd*c)={b}
    first<sub>1</sub>(c)={c}
    follow<sub>1</sub>(X)={c,d}
```

Outros exemplos (IV)

```
    Y → dY | f
    É LL(1), pois:
    X:
        first<sub>1</sub> (bXY) = {b}
        first<sub>1</sub> (c) = {c}
        follow<sub>1</sub> (X) = {f, d, e}
```

• $S \rightarrow aXe$

• $X \rightarrow bXY \mid c \mid \varepsilon$

Objetivo

- Dada uma gramática qualquer, verificar se a mesma é LL(1);
- Em caso negativo, tentar obter uma gramática LL(1) equivalente;
- Uma vez obtida a gramática LL(1) equivalente, usar um método para construção sistemática do analisador sintático;
- Em caso de insucesso, verificar se a mesma é LR(k) e aplicar os métodos correspondentes.

Conversão

Conversão:

- Fatorações à esquerda;
- Substituições;
- Eliminação de recursões à esquerda.

Fatoração à esquerda

$$X \longrightarrow \alpha\beta \mid \alpha\gamma$$

A condição não é verificada para o não-terminal X, pois ambas as regras começam com α .

Para resolver, deve-se colocar em evidência o termo comum mais à esquerda:

$$X \longrightarrow \alpha (\beta \mid \gamma)$$

A condição LL(k) é verificada para a regra, desde que seja verificada dentro dos parênteses também.

Substituições

$$X \longrightarrow \alpha Y \beta$$
$$Y \longrightarrow \gamma \mid \omega$$

O não-terminal Y é substituído pela sua definição:

$$X \to \alpha(\gamma|\omega)\beta$$

O não-terminal Y e suas regras podem ser eliminados da gramática. A gramática resultante é equivalente à original.

Recursões à esquerda

$$X \longrightarrow X\alpha \mid X\beta \mid \gamma \mid \omega$$

O não-terminal X é substituído por:

$$X \to (\gamma | \omega)(\alpha | \beta)^*$$

A condição LL(k) deve ser verificada para a regra acima.

Provar que não é LL(1):

- $S \rightarrow S#$
- $S \rightarrow aAa \mid \epsilon$
- $A \rightarrow abS \mid c$

Provar que é LL(1):

- $S \rightarrow A\#$
- $A \rightarrow Bb \mid Cd$
- $B \rightarrow aB \mid \epsilon$
- $C \rightarrow cC \mid \epsilon$

Provar que é LL(1):

- $S' \rightarrow S#$
- $S \rightarrow aABC$
- $A \rightarrow a \mid bbD$
- $B \rightarrow a \mid \epsilon$
- $C \rightarrow b \mid \epsilon$
- D \rightarrow c | ϵ

Provar que é LL(1):

- $S' \rightarrow S#$
- $S \rightarrow AB$
- $A \rightarrow a \mid \epsilon$
- $B \rightarrow b \mid \epsilon$