HEAP

Baseado no Capitulo 6 de Programming Language Processors in Java, de Watt & Brown



type IntList = ...; {linked list of integers }
Symbol = array [1..2] of Char;
SymList = ...; {linked list of symbols}

var ns: IntList; ps: SymList;

procedure insertI (i: Integer; var 1l: IntList);
Sas {Insert a node containing i at the front of list 1.}

procedure deletel (i: Integer; var 1l: IntlList):

s {Delete the first node containing i from list 1.}
procedure insertS (s: Symbol; var 1l: SymList);
A5 {Insert a node containing s at the front of list 1.}
procedure deleteS (s: Symbol; var 1l: SymList);
i { Delete the first node containing s from list 1.}
ns := nil; psS.c= nil: (1)
insertI (6, ns); insertsS('Cu', ps);
insertI(9, ns); insertS('Ag', ps);
insertI (10, ns); insertS('Au', ps); (2)
deletel (19, ms); deletes('Cu’', ps)r ()

insertI(12, ns); dinsertS('Pt', ps); 4)
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(2) After allocating sev-
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(3) After deallocating
some heap variables:
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(4) After allocating
more heap variables:
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(1) Initially: (2) After compact-
ing the heap:
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procedure deletel (i: Integer; var l: IntList);
{ Delete the first node containing i from list 1.}
var p, q: IntList;
begin
it {Make g point to the first node containing i in list 1,
and make p point to the preceding node (if any). )
if g = 1 then
{If q is at the start of the list, then delete it by making
the head of the list point to g’s successor. }
L is=Lad.taail
else
{Otherwise remove node g by making the previous node p
point to g’s successor. }
ptotaill == .qgf.tail;
{Node ag” is now no longer part of the list and the space associated
with it can be deallocated. }
dispose (q)
end {deletel}



(1) Inmitially:
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(2) Afterp :=q:
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vary D o sl a8 2ie

new(p); p* value of type T1 ;

q := p;
dispose (p) ; (2)
new(r); r” := valueoftypeT2; 3)

.
..y

g” := valueof type T1; (4)



(1) Initially:
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(2) After dispose (p):
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(3) Afternew(x) ; r™:
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(1) Just before garb-
age collection:
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(2) After marking all
heap variables as
inaccessible:

SB—¥

?

(3) After marking all
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(4) After sweeping all
inaccessible heap
variables:
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Procedure to collect garbage:
mark all heap variables as inaccessible:
scan all frames in the stack;
add all heap variables still marked as inaccessible to the free list.

Procedure to scan the storage region R:
for each pointer p in R:
if p points to a heap variable v that is marked as inaccessible:
mark v as accessible;
scan v.



