HEAP

Baseado no Capitulo 6 de Programming Language Processors in Java, de Watt & Brown

type IntList = ...; {linked list of integers }
Symbol = array [1..2] of Char;
SymList = ...; {linked list of symbols}

var ns: IntList; ps: SymList;

procedure insertI (i: Integer; var 1l: IntList);
Sas {Insert a node containing i at the front of list 1.}

procedure deletel (i: Integer; var 1l: IntlList):

s {Delete the first node containing i from list 1.}
procedure insertS (s: Symbol; var 1l: SymList);
A5 {Insert a node containing s at the front of list 1.}
procedure deleteS (s: Symbol; var 1l: SymList);
i { Delete the first node containing s from list 1.}
ns := nil; psS.c= nil: (1)
insertI (6, ns); insertsS('Cu', ps);
insertI(9, ns); insertS('Ag', ps);
insertI (10, ns); insertS('Au', ps); (2)
deletel (19, ms); deletes('Cu’', ps)r ()

insertI(12, ns); dinsertS('Pt', ps); 4)

time.

lifetime of global variables =
| H
— : >
' lifetime of node with 6
| 4
' lifetime of node with ‘Cu’ =
| . - = >
' lifetime of node with 9 ;
L : ’
' lifetime of node with ‘Ag’
I g ;
" lifetime of node with 10
i
J lifetime of node with ‘Au’ »
' 1
' 1 lifetime of node
: i O | with 12
PR lifetime of node
L1 with*Pv
Program (1) (2) B @ Program

starts Slops

(2) After allocating sev-
eral heap variables:

5B =

ns

pPsS

9 -t
.\~~
‘Cu’ P
L

6 e
L]

3t —

(3) After deallocating
some heap variables:

SB—»
ns O-\.\
ps Q\N
i,_,,., -

HT—{

HB—»

(4) After allocating
more heap variables:

SB —»

ns

pPSs

(1) Initially: (2) After dealloc- (3) After dealloc-
ating c: ating b:

HB—»

(1) Initially: (2) After compact-
ing the heap:

HB—» HB—

procedure deletel (i: Integer; var l: IntList);
{ Delete the first node containing i from list 1.}
var p, q: IntList;
begin
it {Make g point to the first node containing i in list 1,
and make p point to the preceding node (if any).)
if g = 1 then
{If q is at the start of the list, then delete it by making
the head of the list point to g’s successor. }
L is=Lad.taail
else
{Otherwise remove node g by making the previous node p
point to g’s successor. }
ptotaill == .qgf.tail;
{Node ag” is now no longer part of the list and the space associated
with it can be deallocated. }
dispose (q)
end {deletel}

(1) Inmitially:

SB—™

P
q

.\-
R

-

HT—]

.
—
|

b

T+

a

HB—»

(2) Afterp :=q:

SB—»

.

P

q

*—__
o>

\
—

HT

"
—

b

<

a

HB—»

vary D o sl a8 2ie

new(p); p* value of type T1 ;

q := p;
dispose (p) ; (2)
new(r); r” := valueoftypeT2; 3)

.
..y

g” := valueof type T1; (4)

(1) Initially:

SB—¥
P .\\
a ‘\\
r ®

ST

value of
type T1

HB—»

(2) After dispose (p):

SB —»
jo) 3]
q
r []
ST

HT

e
|
|

—
|

(3) Afternew(x) ; r™:

SB "

P —

p
q
r

.ﬁ-ﬁ

HT

gl
— ‘

value of

-

(1) Just before garb-
age collection:

SB =

T

HRB—»

(2) After marking all
heap variables as
inaccessible:

SB—¥

?

(3) After marking all
accessible heap
variables:

SBERY
=== B
*—_1
"\
ST
HT
i

HB—»

(4) After sweeping all
inaccessible heap
variables:

SB ¥

EE—

.ﬁ
.\\
‘\

J

v

Procedure to collect garbage:
mark all heap variables as inaccessible:
scan all frames in the stack;
add all heap variables still marked as inaccessible to the free list.

Procedure to scan the storage region R:
for each pointer p in R:
if p points to a heap variable v that is marked as inaccessible:
mark v as accessible;
scan v.

